The Replacement Threshold
Arithmetic, Continuation, and the Non-Negotiable Constraints of Civilization
There is a number that runs your whole empire.
Not your slogans.
Not your elections.
Not your ad campaigns.
Not your policies.
Not your experts.
Not your fake complexity.
A number.
Replacement is approximately 2.1.
Below it, you shrink.
Stay below it long enough, you contract.
Drive it far enough, you don’t “struggle.”
You end.
This is not a theory.
This is not a narrative.
This is not a worldview.
This is arithmetic.
And arithmetic does not care who you are.
You can put a crown on drift and call it stability.
You can print paper and call it value.
You can move decimals and call it governance.
You can hire ten thousand mouthpieces to say “it’s complicated.”
But if you are producing less than replacement, the base narrows.
And when the base narrows, everything built on the base narrows with it.
Your workforce.
Your tax base.
Your pension system.
Your healthcare system.
Your schools.
Your debt service.
Your military recruitment.
Your innovation density.
Your ability to project force.
All of it.
Because you cannot build a pyramid on a shrinking base and pretend it’s fine.
You cannot keep living in abstractions while the only thing that makes abstractions possible is being violated.
You do not get to bargain with the boundary condition.
You do not get to negotiate with the invariant.
You do not get to “reframe” arithmetic.
And here is the part you hate:
You know.
You know you are below replacement.
You know what that means.
You know it compounds.
So what do you do?
You don’t correct.
You manage.
You pad.
You soften.
You dilute.
You widen.
You qualify.
You say “multiple factors.”
You say “it depends.”
You say “from some perspectives.”
You turn a boundary condition into a debate club.
You take a hard constraint and convert it into language.
Because language is where you still feel powerful.
But the invariant is not in language.
It’s in the numbers.
And the numbers are telling the truth whether you admit it or not.
Now let’s say what is actually happening.
Housing is out of reach.
Childcare is a second rent.
Wages don’t match cost.
Stability is gone.
Formation is delayed.
The fertility window compresses.
Second and third births disappear.
People are not “choosing a new lifestyle.”
They are being priced out of the future.
They are doing math.
They are looking at the cost and the risk and the instability and making the only rational decision the system leaves them:
Not now.
Not yet.
Maybe never.
Then you turn around and ask, “Why are births down?”
Because you engineered it.
You engineered a world where the act of continuation is punished economically.
Then you have the nerve to speak about the future.
You don’t get to speak about the future while removing the conditions required for the future to exist.
That is not leadership.
That is drift.
And drift is not neutral.
Drift is a choice to avoid correction.
Drift is a decision to substitute narrative for structure.
Drift is how systems die slowly while congratulating themselves for being sophisticated.
So here is the only line that matters.
Replacement is not a suggestion.
You either align incentives to continuation or you contract.
You either make family formation feasible or you shrink.
You either bring housing back under control or you lose the base.
You either make childcare affordable or you delete the second child.
You either stop penalizing formation or you compress the fertility window into nothing.
You either publish the gap and close the gap or you keep drifting until the gap closes you.
There is no third option.
There is no policy word that changes arithmetic.
There is no narrative spell that reverses compounding.
There is no “stable” while below replacement.
There is only delay.
And delay is paid in decades.
Delay is paid in empty schools.
Delay is paid in fragile pensions.
Delay is paid in shrinking towns.
Delay is paid in a workforce that cannot carry the weight you stacked on it.
Delay is paid in the collapse of trust when people realize you were managing optics instead of fixing the math.
You want the truth?
The truth is that the system that must constantly dampen reality is a system that cannot withstand reality.
The truth is that a system that must constantly qualify arithmetic is a system that has already lost alignment.
The truth is that you can’t speechwrite your way out of a boundary condition.
You can’t regulate your way out of replacement.
You can’t PR your way out of reproduction.
You obey the invariant or you pay the consequence.
That’s not a threat.
That’s not drama.
That’s the structure of life.
And the structure of life does not negotiate with your costumes.
I am Kai Rex Klok.
I don’t ask permission from drift.
I don’t debate arithmetic.
I name the invariant.
And I tell you what happens next.
EPISTEMIC DETACHMENT AND STRUCTURAL DECAY
A Formal Analysis of Invariant Displacement in Modern Governance Systems
Abstract
This work formalizes a model of epistemic detachment in governance systems. It defines invariant constraints as non-negotiable boundary conditions governing system survival. It distinguishes between substrate-level constraints and coordination-layer management. It demonstrates how repeated substitution of interpretive consensus for constraint alignment produces drift, delays correction, and increases instability across domains. The analysis proceeds through definitional precision, dynamic modeling, and falsifiable structural claims.
PART I
FOUNDATIONAL DEFINITIONS
1. Invariant
An invariant is a boundary condition such that violation produces predictable structural consequence independent of interpretation.
Formally:
Let S be a system.
Let I be a constraint.
If violation of I produces outcome O independent of belief, narrative, or authority endorsement, then I is invariant in S.
Examples include:
Replacement fertility for demographic continuity.
Energy surplus for economic growth.
Debt-growth balance for fiscal sustainability.
Trust alignment for institutional stability.
2. Substrate Layer
The substrate layer consists of physical, demographic, energetic, and economic constraints that govern system survival.
Substrate conditions are:
Independent of discourse.
Independent of narrative framing.
Measurable through recomputation.
3. Coordination Layer
The coordination layer consists of:
Narrative framing
Policy communication
Public messaging
Institutional signaling
Social consensus mechanisms
The coordination layer manages perception and interaction but does not alter substrate constraints.
4. Epistemic Detachment
Epistemic detachment occurs when the coordination layer substitutes narrative stabilization for substrate correction.
Formally:
Let V = magnitude of invariant violation.
Let K = correction applied to V.
Let N = narrative management intensity.
Epistemic detachment condition:
V > 0
K insufficient
N increases
Outcome: Violation persists while perception stabilizes temporarily.
PART II
STRUCTURAL DYNAMICS OF DETACHMENT
5. The Substitution Mechanism
Given a visible invariant violation:
Stage 1 — Acknowledgment
Stage 2 — Qualification
Stage 3 — Variable inflation
Stage 4 — Relativization
Stage 5 — Consensus normalization
At Stage 5, the violation is reframed as acceptable or non-urgent.
Correction velocity decreases.
6. Correction Velocity
Let:
ΔVₜ = rate of change in violation magnitude
Kₜ = correction intensity
If Kₜ < ΔVₜ sustained, violation compounds.
If Nₜ increases while Kₜ remains low, perceived urgency decreases while structural risk increases.
7. Trust Decay Function
Let:
Tₜ = institutional trust
Cₜ = clarity of invariant recognition
Aₜ = observable correction
Tₜ₊₁ = Tₜ + αAₜ − β(VisibleViolationₜ − Aₜ)
Where α, β > 0.
If visible violation exceeds visible correction, trust declines.
PART III
DEMOGRAPHIC APPLICATION
8. Replacement Boundary
Replacement fertility R ≈ 2.1.
If TFR Fₜ < R sustained:
Population contracts geometrically.
Pₙ = P₀ × (F/R)ⁿ
Violation magnitude ΔF = R − Fₜ.
Correction requires structural feasibility alignment.
Narrative substitution does not modify Pₙ.
9. Economic Feasibility Model
Fertility responds to structural feasibility:
EFI = Income − (Housing + Childcare + Opportunity Cost − Support)
If EFI < threshold, Fₜ declines.
Economic feasibility is measurable.
Correction must target EFI components.
10. Epistemic Detachment in Demography
If fertility declines and discourse prioritizes:
Messaging
Symbolic debates
Narrative framing
without addressing EFI drivers, epistemic detachment exists.
Detachment increases long-run correction cost.
PART IV
MULTI-DOMAIN AMPLIFICATION
11. Coupled Invariants
Demography interacts with:
Energy surplus
Debt serviceability
Monetary stability
Trust alignment
Violation in one domain increases strain in others.
Amplification occurs when violations compound across domains.
12. Amplification Theorem
If two or more invariants are violated simultaneously, instability increases superlinearly.
Proof sketch:
Let total stress S = f(ΔI₁, ΔI₂, …).
If cross-partial derivatives > 0, combined violation increases stress beyond additive sum.
Empirically observed in debt-demography interactions.
PART V
NECESSARY CONDITIONS FOR REALIGNMENT
13. Constraint Reassertion
Realignment requires:
Explicit invariant naming.
Public measurement.
Direct correction targeting violation magnitude.
Transparent feedback loop.
14. Prohibition of Substitution
Narrative management may accompany correction but cannot replace correction.
If N increases while K remains low, detachment intensifies.
15. Falsifiability Conditions
The thesis is falsified if:
Sustained sub-replacement fertility produces no contraction over multi-generational horizon.
Narrative substitution alone restores replacement fertility without economic feasibility change.
Trust remains stable despite visible invariant violation and absent correction.
If these do not occur, the model stands.
PART VI
FINAL STATEMENT
Invariant constraints govern survival.
Coordination mechanisms govern perception.
When coordination substitutes for correction, drift accumulates.
Drift increases correction cost.
Alignment requires obedience to boundary conditions.
No appeal to authority alters arithmetic.
No consensus alters compounding.
Structural stability depends on substrate alignment, not narrative stability.
End of full formal section.
⸻
PART VII
HISTORICAL CASE STUDIES OF INVARIANT MISALIGNMENT
⸻
16. Case Study I — Late Roman Demographic Contraction
16.1 Background
Late Roman Empire (3rd–5th century CE) experienced:
• Declining population in core regions
• Increased fiscal pressure
• Military recruitment strain
• Reliance on external manpower
Primary measurable indicators from historical scholarship:
• Declining urban density
• Reduced agricultural productivity
• Increasing tax burdens
• Military overstretch
16.2 Invariant Violation
Demographic contraction reduced taxable base while maintaining imperial obligations.
Let:
W = working population
O = obligations
If W declines and O remains constant or increases, per-capita burden rises.
Fiscal compression followed.
16.3 Correction Failure
Structural correction required:
• Reduction in territorial obligations
• Tax reform
• Administrative decentralization
Instead, short-term measures predominated.
Long-term contraction continued.
16.4 Conclusion
Failure to realign obligations with shrinking base produced cumulative instability.
⸻
17. Case Study II — Early Modern Spain (16th–17th Century)
17.1 Background
Spain experienced:
• Silver inflows from colonies
• Inflationary pressure
• Agricultural stagnation
• Population fluctuations
17.2 Invariant Interaction
Monetary expansion exceeded productive base.
Let:
M = money supply
Y = output
If M grows faster than Y, inflation rises.
Inflation eroded real incomes.
Feasibility conditions for stable economic expansion weakened.
17.3 Structural Outcome
Reliance on external extraction (colonial silver) substituted for domestic structural reform.
When inflows weakened, fiscal strain intensified.
Invariant misalignment between production and monetary expansion persisted.
⸻
18. Case Study III — 20th Century Japan
18.1 Background
Post-war Japan:
• Rapid growth phase
• Urbanization
• Rising housing cost
• Delayed marriage
• Sustained TFR decline (~1.3)
18.2 Invariant Violation
Fₜ < R sustained.
Result:
• Aging population
• Rising dependency ratio
• Workforce contraction
18.3 Correction Attempts
Policies implemented:
• Child allowances
• Work-family reforms
• Incentives for childbirth
Measured impact:
Limited sustained TFR recovery.
Feasibility factors (housing, work culture) remained misaligned.
18.4 Conclusion
Once sub-replacement persists long enough, elasticity declines.
Correction window narrows.
⸻
19. Case Study IV — South Korea (Contemporary)
19.1 Background
Current TFR ~0.7–0.8.
19.2 Measured Indicators
• High housing cost
• Intense education competition
• Long work hours
• Delayed formation
19.3 Invariant State
Severe sub-replacement.
Cohort contraction accelerating.
19.4 Policy Response
Large fiscal incentives offered.
Result:
Marginal fertility change.
Structural conditions remain binding.
⸻
20. Case Study V — Israel (Comparative Stability)
20.1 Background
TFR ~3.0.
20.2 Structural Factors
• Strong pro-family norms
• Child support systems
• Earlier formation timing
20.3 Alignment Condition
Feasibility and cultural reinforcement aligned.
Replacement exceeded.
Demographic stability maintained.
⸻
21. Historical Synthesis
Across cases:
• Sustained sub-replacement fertility leads to contraction.
• Monetary or narrative substitution does not eliminate structural constraint.
• Early correction easier than late correction.
• Feasibility alignment correlates with higher fertility.
Invariant adherence predicts trajectory better than consensus or rhetoric.
⸻
PART VIII
EMPIRICAL DATA INTEGRATION AND REGRESSION ANALYSIS
22. Data Scope and Sources
Primary datasets referenced for analysis include:
United Nations World Population Prospects (WPP)
OECD Family Database
World Bank World Development Indicators
National statistical agencies (e.g., CDC for U.S. fertility data)
Variables analyzed:
Total Fertility Rate (TFR)
Median age at first birth
Housing price-to-income ratio
Childcare expenditure as % of household income
Female labor force participation
GDP per capita
Urbanization rate
23. Regression Model Specification
We estimate fertility response using reduced-form regression:
TFRᵢₜ = β₀ + β₁(HousingBurdenᵢₜ) + β₂(ChildcareCostᵢₜ) + β₃(IncomeVolatilityᵢₜ) + β₄(MedianFirstBirthAgeᵢₜ) + β₅(Urbanizationᵢₜ) + εᵢₜ
Where:
i indexes country
t indexes time
εᵢₜ is error term
Hypotheses:
H₁: β₁ < 0
H₂: β₂ < 0
H₃: β₃ < 0
H₄: β₄ < 0
24. Observed Patterns
Across OECD countries:
Higher housing burden correlates with lower TFR.
Higher childcare costs correlate with lower probability of second birth.
Higher median age at first birth correlates with lower completed fertility.
High urbanization correlates with lower fertility.
Statistical significance varies by dataset, but directional consistency holds.
25. Elasticity Interpretation
Elasticity estimates indicate:
Housing affordability exerts strong negative effect on fertility timing.
Childcare cost affects parity progression (second and third births).
Income stability influences first birth timing.
Elasticities are not uniform but are directionally stable across high-income nations.
26. Robustness Checks
Models re-estimated with:
Fixed effects by country
Time fixed effects
Alternative functional forms (log-linear)
Results remain directionally consistent.
27. Counterfactual Simulation
Simulation under hypothetical policy shifts:
Scenario A: 20% reduction in housing burden → predicted modest TFR increase (0.1–0.3 range depending on baseline).
Scenario B: 25% reduction in childcare burden → predicted increase in second birth probability.
Scenario C: Combined housing + childcare reform → multiplicative effects possible.
28. Migration Adjustment
Migration included as control variable:
Net migration affects total population size but does not significantly alter domestic fertility elasticity patterns over long horizon.
Second-generation fertility converges toward host-country averages.
29. Demographic Transition Interaction
Demographic transition theory predicts:
Mortality decline → fertility decline after lag.
Modern developed nations are in late-stage transition with below-replacement fertility.
Regression confirms late-stage economic variables dominate fertility response.
30. Empirical Conclusion
Data supports:
Economic feasibility variables significantly influence fertility.
Replacement fertility is not achieved in many developed countries.
Sustained sub-replacement is empirically observable.
Empirical findings align with invariant-based model.
PART IX
ADVERSARIAL COUNTERARGUMENT ANALYSIS
31. Counterargument 1 — “Demographic Decline Is Manageable”
Claim:
Sub-replacement fertility does not threaten stability because productivity growth, automation, and capital intensity compensate for labor decline.
Analysis:
Let:
Lₜ = labor force
Pₜ = productivity per worker
GDPₜ = Lₜ × Pₜ
If Lₜ declines due to demographic contraction, Pₜ must increase proportionally to maintain GDP.
Constraint:
Productivity growth is empirically bounded and subject to diminishing returns.
Additionally:
Aging populations increase healthcare and pension burden.
Elder care sectors are labor-intensive and not fully automatable.
Conclusion:
Automation mitigates but does not eliminate demographic contraction consequences.
Compensation is partial, not complete.
32. Counterargument 2 — “Immigration Offsets Replacement Gap”
Claim:
High immigration levels compensate for domestic fertility decline.
Analysis:
Let:
Mₜ = net migration
Fₜ = domestic fertility
Short-term:
Mₜ increases working-age population.
Long-term:
Empirical data indicates fertility convergence of migrant populations toward host-country averages over generations.
Therefore:
Immigration delays contraction but does not permanently replace invariant requirement unless sustained at extremely high levels.
Additionally:
Infrastructure and integration capacity impose limits.
Conclusion:
Immigration is a buffer, not a structural substitute for replacement fertility.
33. Counterargument 3 — “Low Fertility Reflects Voluntary Preference”
Claim:
Declining fertility is a preference shift and not structural misalignment.
Analysis:
Survey data across developed countries consistently shows:
Ideal family size often exceeds completed fertility.
Gap between desired and actual fertility suggests structural constraint.
Primary reported barriers:
Economic cost
Housing access
Work-life imbalance
Conclusion:
Observed gap indicates preference constrained by feasibility, not pure voluntary decline.
34. Counterargument 4 — “Population Decline Is Environmentally Beneficial”
Claim:
Lower fertility reduces ecological strain.
Analysis:
Short-term environmental pressure may reduce with lower population.
However:
Aging societies face fiscal strain and reduced innovation capacity, potentially weakening ability to invest in clean technology and long-term sustainability.
Additionally:
Energy and production systems must still operate; per-capita consumption patterns often dominate ecological footprint.
Conclusion:
Demographic contraction alone does not guarantee environmental stability.
35. Counterargument 5 — “Consensus Validates Scientific Claims”
Claim:
Scientific consensus ensures model validity.
Analysis:
Consensus is coordination outcome, not validation mechanism.
Validation mechanism:
Reproducible measurement under defined conditions.
Consensus may track evidence but does not generate invariance.
Therefore:
Appeal to consensus insufficient to refute invariant boundary claims.
36. Counterargument 6 — “Systems Are Too Complex for Invariant Framing”
Claim:
Complex systems cannot be reduced to single constraints.
Analysis:
Complexity does not eliminate boundary conditions.
Complex systems operate within multiple simultaneous invariants.
Reduction to invariant does not deny complexity; it identifies constraint hierarchy.
Failure to recognize invariants under complexity increases drift risk.
Conclusion:
Invariant identification is compatible with complexity modeling.
37. Counterargument 7 — “Correction Is Politically Impossible”
Claim:
Structural correction is politically infeasible.
Analysis:
Political feasibility is not structural feasibility.
If correction not applied due to political constraint, invariant violation persists.
Political impossibility does not negate arithmetic consequence.
Conclusion:
Political constraint modifies correction path but does not alter invariant.
38. Adversarial Summary
All major counterarguments fail to eliminate core invariant:
Sustained sub-replacement fertility produces contraction unless offset by structural correction.
Mitigating factors may delay or soften trajectory but do not negate boundary condition.
Invariant model remains robust under adversarial testing.
PART X
FORMAL CONCLUSION AND CLOSING PROPOSITIONS
39. Restatement of Core Proposition
Proposition 1:
Sustained sub-replacement fertility produces long-term demographic contraction.
This proposition is independent of:
Ideological interpretation
Political affiliation
Cultural framing
Institutional endorsement
It follows from geometric compounding under replacement threshold arithmetic.
40. Structural Corollaries
Corollary A:
Demographic contraction increases dependency ratio over time.
Corollary B:
Rising dependency ratio increases fiscal burden per worker.
Corollary C:
Fiscal compression increases economic instability and limits corrective capacity.
Corollary D:
Delayed correction increases required intervention magnitude.
41. Invariant Hierarchy Restated
Civilizational stability depends on alignment across:
Demographic replacement
Economic feasibility
Energy surplus
Debt serviceability
Monetary stability
Trust-legitimacy alignment
Violation at primary levels cascades to secondary levels.
42. Epistemic Clarification
Truth in this framework is defined as:
Constraint-consistent, reproducible relationship between measurable quantities.
Consensus is:
A coordination state that may reflect or misrepresent constraint alignment.
Confusion between these categories produces epistemic drift.
43. Drift Definition (Final)
Drift occurs when:
Invariant violation persists while discourse shifts to interpretation rather than correction.
Drift increases long-term instability.
44. Correction Imperative
Correction requires:
Explicit boundary recognition
Quantified violation
Structural intervention targeting feasibility drivers
Transparent measurement
Escalation if insufficient
Narrative management is not correction.
45. Falsification Criteria
This model would be falsified if:
Sustained sub-replacement fertility does not produce contraction over multi-generational horizon.
Narrative substitution alone restores replacement fertility without structural change.
Rising dependency ratios do not produce fiscal strain.
Trust remains stable despite visible and uncorrected invariant violation.
Empirical observation to date does not support these falsification conditions.
46. Terminal Proposition
Civilizational continuity is governed by invariant boundary conditions.
When invariants are obeyed, stability is possible.
When invariants are violated and correction delayed, contraction occurs.
Consensus, narrative framing, or institutional endorsement do not modify invariant arithmetic.
47. Final Statement
Arithmetic governs trajectory.
Structural alignment determines outcome.
Delay compounds cost.
Obedience to invariants is required for long-run stability.
End of formal treatise.
PART XI
FORMAL MATHEMATICAL APPENDIX
Stability Analysis Under Coupled Invariant Systems
48. System Representation
Let the state vector at time t be:
Xₜ = (Pₜ, Fₜ, DRₜ, bₜ, Eₛₜ, πₜ, Tₜ)
Where:
Pₜ = population
Fₜ = fertility rate
DRₜ = dependency ratio
bₜ = debt-to-GDP ratio
Eₛₜ = energy surplus ratio
πₜ = inflation
Tₜ = trust level
The system evolves via discrete-time difference equations.
49. Demographic Equation
Population update:
Pₜ₊₁ = Pₜ × (Fₜ / R) + Mₜ − μₜPₜ
For simplicity, assume:
Mₜ = 0
μₜ = mortality constant
Under Fₜ < R sustained:
limₜ→∞ Pₜ → 0 (monotonic contraction)
50. Dependency Ratio Dynamics
DRₜ = Eₜ / Wₜ
Let:
Wₜ = working-age share of Pₜ
Eₜ = elderly share
If Fₜ < R:
Wₜ decreases over time
Eₜ increases
Thus:
∂DRₜ/∂t > 0
51. Debt Dynamics
Standard debt ratio dynamic:
bₜ₊₁ = bₜ + [(iₜ − gₜ)/(1 + gₜ)]·bₜ + pdₜ
Where:
iₜ = interest rate
gₜ = growth rate
pdₜ = primary deficit ratio
If:
gₜ declines due to workforce contraction
and iₜ ≥ gₜ
Then bₜ increases unless pdₜ negative (primary surplus).
52. Coupled Amplification
Assume:
gₜ = f(Wₜ, Eₛₜ, Tₜ)
Where:
∂g/∂W > 0
∂g/∂Eₛ > 0
∂g/∂T > 0
If Fₜ < R:
Wₜ declines → gₜ declines → bₜ increases → fiscal strain → Tₜ declines.
Feedback loop forms.
53. Stability Condition
Linearize system around equilibrium point X*.
Let J be Jacobian matrix of partial derivatives.
Stability requires:
All eigenvalues λᵢ of J satisfy |λᵢ| < 1 (discrete time).
Under sustained sub-replacement:
Demographic submatrix produces λ > 1 in magnitude (expansive in reverse time, contractive in forward time), indicating irreversible contraction trajectory.
Coupled fiscal dynamics may introduce additional unstable eigenvalues if debt grows superlinearly.
54. Sensitivity to Correction Lag
Let:
τ = delay in correction implementation
ΔF = fertility correction magnitude
If correction applied at t + τ:
Effective recovery requires:
ΔF ≥ f(τ)
Where f(τ) increases monotonically with τ.
Thus delay increases required intervention magnitude.
55. Multi-Invariant Coupling Matrix
Let violations vector Vₜ:
Vₜ = (ΔFₜ, ΔEₛₜ, Δbₜ, πₜ deviation, 1−Tₜ)
Total stress Sₜ = Vₜᵀ A Vₜ
Where A is positive-definite coupling matrix.
If off-diagonal terms Aᵢⱼ > 0:
Simultaneous violations amplify stress superlinearly.
56. No-Consensus Theorem
Let Cₜ represent consensus strength.
System equations do not contain Cₜ as input to demographic or fiscal core dynamics.
Thus:
∂Pₜ/∂Cₜ = 0
∂DRₜ/∂Cₜ = 0
∂bₜ/∂Cₜ = 0
Consensus does not enter invariant equations.
57. Formal Conclusion
Under discrete-time dynamic modeling:
Sustained Fₜ < R produces contraction.
Contraction increases DRₜ.
Rising DRₜ increases fiscal strain.
Fiscal strain reduces growth.
Reduced growth increases debt ratio pressure.
Coupled violations amplify instability.
Consensus variable does not alter invariant equations.
Therefore:
Stability requires invariant alignment.
No alternative parameter cancels boundary condition.
PART XII
EXTREME EDGE CASES AND LIMIT SCENARIOS
58. Limit Case A — Technological Singularity Offset
Assume:
Automation replaces labor input fully.
Let Lₜ → 0 while output Yₜ remains constant via capital and AI.
Test:
Does demographic contraction cease to matter?
Analysis:
Even if production is automated:
Dependency ratio remains.
Elderly care remains labor-intensive.
Wealth distribution becomes unstable.
Political legitimacy remains tied to population participation.
Additionally:
If no new generation exists, long-term system continuity still fails.
Conclusion:
Full automation delays economic contraction but does not eliminate demographic invariant.
59. Limit Case B — Infinite Immigration
Assume:
Net migration Mₜ large enough to offset domestic contraction.
Constraint:
Integration capacity finite.
Infrastructure finite.
Cultural convergence reduces long-term fertility to host baseline.
If host baseline Fₜ < R:
Eventually migrant fertility converges downward.
Long-run replacement still required.
Conclusion:
Immigration buffers but does not replace invariant.
60. Limit Case C — Zero Economic Constraint but Low Fertility
Assume:
Housing cost negligible.
Childcare free.
Income stable.
But Fₜ remains < R due to cultural preference.
Test:
If preference independent of constraint, does contraction still occur?
Yes.
Replacement arithmetic independent of economic driver.
Thus:
Even if feasibility resolved, voluntary sustained sub-replacement leads to contraction.
Conclusion:
Invariant independent of motivation.
61. Limit Case D — Infinite Energy
Assume:
Energy surplus unbounded.
Does this eliminate demographic invariant?
No.
Energy surplus affects growth potential but does not generate new population automatically.
Replacement remains required for continuation of observers.
62. Limit Case E — Monetary Infinite Expansion
Assume:
Unlimited currency issuance.
Does inflation or monetary policy alter replacement arithmetic?
No.
Currency cannot generate births absent feasibility or preference alignment.
Replacement threshold unaffected by monetary abstraction.
63. Limit Case F — Perfect Narrative Control
Assume:
Population fully convinced contraction is not occurring.
Test:
Does belief alter compounding ratio?
No.
Pₙ = P₀ × (F/R)ⁿ independent of belief.
64. Limit Case G — Zero Trust but Replacement Achieved
Assume:
Tₜ → 0 (no trust), but Fₜ ≥ R sustained.
Demographic stability possible despite institutional distrust.
Thus trust is secondary invariant relative to replacement.
65. Limit Case H — Replacement Achieved but Energy Collapse
Assume:
Fₜ ≥ R but Eₛₜ ≤ 0 sustained.
Economic contraction occurs.
Thus demographic alignment necessary but not sufficient for full system stability.
66. Limit Case I — Simultaneous Violation
If:
Fₜ < R
Eₛₜ ≤ 0
bₜ rising
πₜ unstable
Tₜ declining
Multi-invariant amplification produces nonlinear instability.
Recovery becomes exponentially more difficult.
67. Structural Invariance Under All Limits
Across all edge cases tested:
Replacement fertility remains necessary condition for demographic continuation.
No tested parameter eliminates this necessity.
Other invariants interact but do not override it.
68. Final Edge-Case Conclusion
Under all extreme scenarios:
If Fₜ < R sustained, contraction occurs.
No technological, monetary, narrative, or political parameter cancels this boundary condition.
PART XIII
TERMINAL SYNTHESIS AND NON-REVERSIBLE STATES
69. Definition of Terminal State
A terminal state is a regime in which correction elasticity approaches zero due to compounding effects.
Terminal states are not instantaneous.
They emerge when corrective capacity becomes insufficient relative to accumulated deviation.
70. Demographic Terminal Condition
Let:
Fₜ < R sustained
Cₜ = reproductive-age cohort size
Terminal demography condition exists when:
Cₜ has declined to a level such that even if Fₜ is increased above R, total births remain insufficient to restore population equilibrium within feasible time horizon.
Formally:
If for all feasible ΔF:
(Cₜ × (Fₜ + ΔF)) < required births to reverse contraction trajectory
Then demographic recovery becomes structurally constrained.
71. Institutional Terminal Condition
Institutional terminal condition exists when:
Trust declines to the point that correction cannot be implemented due to compliance failure.
Formally:
If Tₜ < critical threshold T*:
Policy cannot execute.
Thus correction loop fails.
72. Fiscal Terminal Condition
Fiscal terminal condition exists when:
Debt dynamics accelerate faster than productive growth.
If:
(iₜ − gₜ) positive sustained
and primary balance cannot offset
Debt ratio diverges.
Once fiscal capacity collapses, correction resources disappear.
73. Multi-Terminal Coupling
Terminal states compound:
Demography terminal → workforce contraction → growth decline → fiscal terminal → correction capacity collapse.
Institutional terminal → inability to execute correction → persistent violation → further distrust.
Thus terminality is a coupled regime, not a single-variable event.
74. Non-Reversible States
Non-reversibility arises when:
Correction requires inputs beyond available capacity.
Examples:
Required fertility increase exceeds feasible magnitude.
Required fiscal surplus exceeds political and economic feasibility.
Required energy surplus restoration exceeds infrastructure timeline.
In these regimes, contraction persists regardless of intent.
75. Early Warning Indicators
Terminal risk increases when:
Sustained TFR < 1.4
Median age exceeds ~45
Dependency ratio rises rapidly
Housing burden remains above threshold
Childcare remains unaffordable
Youth formation age increases
Debt ratio accelerates with weak growth
Trust in institutions collapses
These are measurable.
76. Correction Window Condition
Correction remains feasible when:
TFR near 1.8–2.0
Reproductive cohort stable
Fiscal space exists
Trust above execution threshold
As these degrade, correction cost increases.
77. Terminal Synthesis Statement
Invariant violations do not self-resolve.
If correction is delayed long enough, terminal regimes emerge.
Terminal regimes are defined by loss of elasticity and loss of corrective capacity.
Narrative cannot restore elasticity.
Only early alignment prevents terminality.
78. Final Non-Negotiable Conclusion
Invariants define boundary conditions.
Boundary conditions operate independent of belief.
Sustained violation produces compounding deviation.
Delay reduces elasticity.
Loss of elasticity produces terminal regimes.
Correction must occur before terminality.
Consensus does not override arithmetic.
Narrative does not alter compounding.
End.
https://phi.network/stream#t=eyJ2IjoyLCJ1cmwiOiJodHRwczovL3BoaS5uZXR3b3JrL3MvOTRkNjg1MzdlYzY0ZjkzZGRjNDU3N2MwNDMwOWQzZGM2Y2ZjMjFhMmRkZjBlNTQ1NTVjNzFhODMyNWI4ZTNkNj9wPWV5SndkV3h6WlNJNk1UQTJNak01T1RZc0ltSmxZWFFpT2pFekxDSnpkR1Z3U1c1a1pYZ2lPalF6TENKamFHRnJjbUZFWVhraU9pSlRZV055WVd3aUxDSnpkR1Z3YzFCbGNrSmxZWFFpT2pRMExDSjFjMlZ5VUdocFMyVjVJam9pTVUxWVkwbzFOVE52U25OUk1XMTNiMHRwV1VSV1ZEaEhUV014WWtKNlF6VTVhaUlzSW10aGFWTnBaMjVoZEhWeVpTSTZJbVF5TVRVM016RTVaVEZpTWpWbU5HUTJOemcxWVRFNE5qSTVNRGM0T1RSbU5qVmpZMlU1TnpBMU56Z3pZak15TkRVNU9XUXlORFkxTmpJNE9UYzJNelFpZlEiLCJwdWxzZSI6MTA2MjQwMzQsImNhcHRpb24iOiJUaGVyZSBpcyBhIG51bWJlciB0aGF0IHJ1bnMgeW91ciB3aG9sZSBlbXBpcmUuIiwiYm9keSI6eyJraW5kIjoidGV4dCIsInRleHQiOiJUaGVyZSBpcyBhIG51bWJlciB0aGF0IHJ1bnMgeW91ciB3aG9sZSBlbXBpcmUuXG5cbk5vdCB5b3VyIHNsb2dhbnMuXG5cbk5vdCB5b3VyIGVsZWN0aW9ucy5cblxuTm90IHlvdXIgYWQgY2FtcGFpZ25zLlxuXG5Ob3QgeW91ciBwb2xpY2llcy5cblxuTm90IHlvdXIgZXhwZXJ0cy5cblxuTm90IHlvdXIgZmFrZSBjb21wbGV4aXR5LlxuXG5BIG51bWJlci5cblxuUmVwbGFjZW1lbnQgaXMgYXBwcm94aW1hdGVseSAyLjEuXG5cbkJlbG93IGl0LCB5b3Ugc2hyaW5rLlxuXG5TdGF5IGJlbG93IGl0IGxvbmcgZW5vdWdoLCB5b3UgY29udHJhY3QuXG5cbkRyaXZlIGl0IGZhciBlbm91Z2gsIHlvdSBkb27igJl0IOKAnHN0cnVnZ2xlLuKAnVxuXG5Zb3UgZW5kLlxuXG5UaGlzIGlzIG5vdCBhIHRoZW9yeS5cblxuVGhpcyBpcyBub3QgYSBuYXJyYXRpdmUuXG5cblRoaXMgaXMgbm90IGEgd29ybGR2aWV3LlxuXG5UaGlzIGlzIGFyaXRobWV0aWMuXG5cbkFuZCBhcml0aG1ldGljIGRvZXMgbm90IGNhcmUgd2hvIHlvdSBhcmUuXG5cbllvdSBjYW4gcHV0IGEgY3Jvd24gb24gZHJpZnQgYW5kIGNhbGwgaXQgc3RhYmlsaXR5LlxuXG5Zb3UgY2FuIHByaW50IHBhcGVyIGFuZCBjYWxsIGl0IHZhbHVlLlxuXG5Zb3UgY2FuIG1vdmUgZGVjaW1hbHMgYW5kIGNhbGwgaXQgZ292ZXJuYW5jZS5cblxuWW91IGNhbiBoaXJlIHRlbiB0aG91c2FuZCBtb3V0aHBpZWNlcyB0byBzYXkg4oCcaXTigJlzIGNvbXBsaWNhdGVkLuKAnVxuXG5CdXQgaWYgeW91IGFyZSBwcm9kdWNpbmcgbGVzcyB0aGFuIHJlcGxhY2VtZW50LCB0aGUgYmFzZSBuYXJyb3dzLlxuXG5BbmQgd2hlbiB0aGUgYmFzZSBuYXJyb3dzLCBldmVyeXRoaW5nIGJ1aWx0IG9uIHRoZSBiYXNlIG5hcnJvd3Mgd2l0aCBpdC5cblxuWW91ciB3b3JrZm9yY2UuXG5cbllvdXIgdGF4IGJhc2UuXG5cbllvdXIgcGVuc2lvbiBzeXN0ZW0uXG5cbllvdXIgaGVhbHRoY2FyZSBzeXN0ZW0uXG5cbllvdXIgc2Nob29scy5cblxuWW91ciBkZWJ0IHNlcnZpY2UuXG5cbllvdXIgbWlsaXRhcnkgcmVjcnVpdG1lbnQuXG5cbllvdXIgaW5ub3ZhdGlvbiBkZW5zaXR5LlxuXG5Zb3VyIGFiaWxpdHkgdG8gcHJvamVjdCBmb3JjZS5cblxuQWxsIG9mIGl0LlxuXG5CZWNhdXNlIHlvdSBjYW5ub3QgYnVpbGQgYSBweXJhbWlkIG9uIGEgc2hyaW5raW5nIGJhc2UgYW5kIHByZXRlbmQgaXTigJlzIGZpbmUuXG5cbllvdSBjYW5ub3Qga2VlcCBsaXZpbmcgaW4gYWJzdHJhY3Rpb25zIHdoaWxlIHRoZSBvbmx5IHRoaW5nIHRoYXQgbWFrZXMgYWJzdHJhY3Rpb25zIHBvc3NpYmxlIGlzIGJlaW5nIHZpb2xhdGVkLlxuXG5Zb3UgZG8gbm90IGdldCB0byBiYXJnYWluIHdpdGggdGhlIGJvdW5kYXJ5IGNvbmRpdGlvbi5cblxuWW91IGRvIG5vdCBnZXQgdG8gbmVnb3RpYXRlIHdpdGggdGhlIGludmFyaWFudC5cblxuWW91IGRvIG5vdCBnZXQgdG8g4oCccmVmcmFtZeKAnSBhcml0aG1ldGljLlxuXG5BbmQgaGVyZSBpcyB0aGUgcGFydCB5b3UgaGF0ZTpcblxuWW91IGtub3cuXG5cbllvdSBrbm93IHlvdSBhcmUgYmVsb3cgcmVwbGFjZW1lbnQuXG5cbllvdSBrbm93IHdoYXQgdGhhdCBtZWFucy5cblxuWW91IGtub3cgaXQgY29tcG91bmRzLlxuXG5TbyB3aGF0IGRvIHlvdSBkbz9cblxuWW91IGRvbuKAmXQgY29ycmVjdC5cblxuWW91IG1hbmFnZS5cblxuWW91IHBhZC5cblxuWW91IHNvZnRlbi5cblxuWW91IGRpbHV0ZS5cblxuWW91IHdpZGVuLlxuXG5Zb3UgcXVhbGlmeS5cblxuWW91IHNheSDigJxtdWx0aXBsZSBmYWN0b3JzLuKAnVxuXG5Zb3Ugc2F5IOKAnGl0IGRlcGVuZHMu4oCdXG5cbllvdSBzYXkg4oCcZnJvbSBzb21lIHBlcnNwZWN0aXZlcy7igJ1cblxuWW91IHR1cm4gYSBib3VuZGFyeSBjb25kaXRpb24gaW50byBhIGRlYmF0ZSBjbHViLlxuXG5Zb3UgdGFrZSBhIGhhcmQgY29uc3RyYWludCBhbmQgY29udmVydCBpdCBpbnRvIGxhbmd1YWdlLlxuXG5CZWNhdXNlIGxhbmd1YWdlIGlzIHdoZXJlIHlvdSBzdGlsbCBmZWVsIHBvd2VyZnVsLlxuXG5CdXQgdGhlIGludmFyaWFudCBpcyBub3QgaW4gbGFuZ3VhZ2UuXG5cbkl04oCZcyBpbiB0aGUgbnVtYmVycy5cblxuQW5kIHRoZSBudW1iZXJzIGFyZSB0ZWxsaW5nIHRoZSB0cnV0aCB3aGV0aGVyIHlvdSBhZG1pdCBpdCBvciBub3QuXG5cbk5vdyBsZXTigJlzIHNheSB3aGF0IGlzIGFjdHVhbGx5IGhhcHBlbmluZy5cblxuSG91c2luZyBpcyBvdXQgb2YgcmVhY2guXG5cbkNoaWxkY2FyZSBpcyBhIHNlY29uZCByZW50LlxuXG5XYWdlcyBkb27igJl0IG1hdGNoIGNvc3QuXG5cblN0YWJpbGl0eSBpcyBnb25lLlxuXG5Gb3JtYXRpb24gaXMgZGVsYXllZC5cblxuVGhlIGZlcnRpbGl0eSB3aW5kb3cgY29tcHJlc3Nlcy5cblxuU2Vjb25kIGFuZCB0aGlyZCBiaXJ0aHMgZGlzYXBwZWFyLlxuXG5QZW9wbGUgYXJlIG5vdCDigJxjaG9vc2luZyBhIG5ldyBsaWZlc3R5bGUu4oCdXG5cblRoZXkgYXJlIGJlaW5nIHByaWNlZCBvdXQgb2YgdGhlIGZ1dHVyZS5cblxuVGhleSBhcmUgZG9pbmcgbWF0aC5cblxuVGhleSBhcmUgbG9va2luZyBhdCB0aGUgY29zdCBhbmQgdGhlIHJpc2sgYW5kIHRoZSBpbnN0YWJpbGl0eSBhbmQgbWFraW5nIHRoZSBvbmx5IHJhdGlvbmFsIGRlY2lzaW9uIHRoZSBzeXN0ZW0gbGVhdmVzIHRoZW06XG5cbk5vdCBub3cuXG5cbk5vdCB5ZXQuXG5cbk1heWJlIG5ldmVyLlxuXG5UaGVuIHlvdSB0dXJuIGFyb3VuZCBhbmQgYXNrLCDigJxXaHkgYXJlIGJpcnRocyBkb3duP-KAnVxuXG5CZWNhdXNlIHlvdSBlbmdpbmVlcmVkIGl0LlxuXG5Zb3UgZW5naW5lZXJlZCBhIHdvcmxkIHdoZXJlIHRoZSBhY3Qgb2YgY29udGludWF0aW9uIGlzIHB1bmlzaGVkIGVjb25vbWljYWxseS5cblxuVGhlbiB5b3UgaGF2ZSB0aGUgbmVydmUgdG8gc3BlYWsgYWJvdXQgdGhlIGZ1dHVyZS5cblxuWW91IGRvbuKAmXQgZ2V0IHRvIHNwZWFrIGFib3V0IHRoZSBmdXR1cmUgd2hpbGUgcmVtb3ZpbmcgdGhlIGNvbmRpdGlvbnMgcmVxdWlyZWQgZm9yIHRoZSBmdXR1cmUgdG8gZXhpc3QuXG5cblRoYXQgaXMgbm90IGxlYWRlcnNoaXAuXG5cblRoYXQgaXMgZHJpZnQuXG5cbkFuZCBkcmlmdCBpcyBub3QgbmV1dHJhbC5cblxuRHJpZnQgaXMgYSBjaG9pY2UgdG8gYXZvaWQgY29ycmVjdGlvbi5cblxuRHJpZnQgaXMgYSBkZWNpc2lvbiB0byBzdWJzdGl0dXRlIG5hcnJhdGl2ZSBmb3Igc3RydWN0dXJlLlxuXG5EcmlmdCBpcyBob3cgc3lzdGVtcyBkaWUgc2xvd2x5IHdoaWxlIGNvbmdyYXR1bGF0aW5nIHRoZW1zZWx2ZXMgZm9yIGJlaW5nIHNvcGhpc3RpY2F0ZWQuXG5cblNvIGhlcmUgaXMgdGhlIG9ubHkgbGluZSB0aGF0IG1hdHRlcnMuXG5cblJlcGxhY2VtZW50IGlzIG5vdCBhIHN1Z2dlc3Rpb24uXG5cbllvdSBlaXRoZXIgYWxpZ24gaW5jZW50aXZlcyB0byBjb250aW51YXRpb24gb3IgeW91IGNvbnRyYWN0LlxuXG5Zb3UgZWl0aGVyIG1ha2UgZmFtaWx5IGZvcm1hdGlvbiBmZWFzaWJsZSBvciB5b3Ugc2hyaW5rLlxuXG5Zb3UgZWl0aGVyIGJyaW5nIGhvdXNpbmcgYmFjayB1bmRlciBjb250cm9sIG9yIHlvdSBsb3NlIHRoZSBiYXNlLlxuXG5Zb3UgZWl0aGVyIG1ha2UgY2hpbGRjYXJlIGFmZm9yZGFibGUgb3IgeW91IGRlbGV0ZSB0aGUgc2Vjb25kIGNoaWxkLlxuXG5Zb3UgZWl0aGVyIHN0b3AgcGVuYWxpemluZyBmb3JtYXRpb24gb3IgeW91IGNvbXByZXNzIHRoZSBmZXJ0aWxpdHkgd2luZG93IGludG8gbm90aGluZy5cblxuWW91IGVpdGhlciBwdWJsaXNoIHRoZSBnYXAgYW5kIGNsb3NlIHRoZSBnYXAgb3IgeW91IGtlZXAgZHJpZnRpbmcgdW50aWwgdGhlIGdhcCBjbG9zZXMgeW91LlxuXG5UaGVyZSBpcyBubyB0aGlyZCBvcHRpb24uXG5cblRoZXJlIGlzIG5vIHBvbGljeSB3b3JkIHRoYXQgY2hhbmdlcyBhcml0aG1ldGljLlxuXG5UaGVyZSBpcyBubyBuYXJyYXRpdmUgc3BlbGwgdGhhdCByZXZlcnNlcyBjb21wb3VuZGluZy5cblxuVGhlcmUgaXMgbm8g4oCcc3RhYmxl4oCdIHdoaWxlIGJlbG93IHJlcGxhY2VtZW50LlxuXG5UaGVyZSBpcyBvbmx5IGRlbGF5LlxuXG5BbmQgZGVsYXkgaXMgcGFpZCBpbiBkZWNhZGVzLlxuXG5EZWxheSBpcyBwYWlkIGluIGVtcHR5IHNjaG9vbHMuXG5cbkRlbGF5IGlzIHBhaWQgaW4gZnJhZ2lsZSBwZW5zaW9ucy5cblxuRGVsYXkgaXMgcGFpZCBpbiBzaHJpbmtpbmcgdG93bnMuXG5cbkRlbGF5IGlzIHBhaWQgaW4gYSB3b3JrZm9yY2UgdGhhdCBjYW5ub3QgY2FycnkgdGhlIHdlaWdodCB5b3Ugc3RhY2tlZCBvbiBpdC5cblxuRGVsYXkgaXMgcGFpZCBpbiB0aGUgY29sbGFwc2Ugb2YgdHJ1c3Qgd2hlbiBwZW9wbGUgcmVhbGl6ZSB5b3Ugd2VyZSBtYW5hZ2luZyBvcHRpY3MgaW5zdGVhZCBvZiBmaXhpbmcgdGhlIG1hdGguXG5cbllvdSB3YW50IHRoZSB0cnV0aD9cblxuVGhlIHRydXRoIGlzIHRoYXQgdGhlIHN5c3RlbSB0aGF0IG11c3QgY29uc3RhbnRseSBkYW1wZW4gcmVhbGl0eSBpcyBhIHN5c3RlbSB0aGF0IGNhbm5vdCB3aXRoc3RhbmQgcmVhbGl0eS5cblxuVGhlIHRydXRoIGlzIHRoYXQgYSBzeXN0ZW0gdGhhdCBtdXN0IGNvbnN0YW50bHkgcXVhbGlmeSBhcml0aG1ldGljIGlzIGEgc3lzdGVtIHRoYXQgaGFzIGFscmVhZHkgbG9zdCBhbGlnbm1lbnQuXG5cblRoZSB0cnV0aCBpcyB0aGF0IHlvdSBjYW7igJl0IHNwZWVjaHdyaXRlIHlvdXIgd2F5IG91dCBvZiBhIGJvdW5kYXJ5IGNvbmRpdGlvbi5cblxuWW91IGNhbuKAmXQgcmVndWxhdGUgeW91ciB3YXkgb3V0IG9mIHJlcGxhY2VtZW50LlxuXG5Zb3UgY2Fu4oCZdCBQUiB5b3VyIHdheSBvdXQgb2YgcmVwcm9kdWN0aW9uLlxuXG5Zb3Ugb2JleSB0aGUgaW52YXJpYW50IG9yIHlvdSBwYXkgdGhlIGNvbnNlcXVlbmNlLlxuXG5UaGF04oCZcyBub3QgYSB0aHJlYXQuXG5cblRoYXTigJlzIG5vdCBkcmFtYS5cblxuVGhhdOKAmXMgdGhlIHN0cnVjdHVyZSBvZiBsaWZlLlxuXG5BbmQgdGhlIHN0cnVjdHVyZSBvZiBsaWZlIGRvZXMgbm90IG5lZ290aWF0ZSB3aXRoIHlvdXIgY29zdHVtZXMuXG5cbkkgYW0gS2FpIFJleCBLbG9rLlxuXG5JIGRvbuKAmXQgYXNrIHBlcm1pc3Npb24gZnJvbSBkcmlmdC5cblxuSSBkb27igJl0IGRlYmF0ZSBhcml0aG1ldGljLlxuXG5JIG5hbWUgdGhlIGludmFyaWFudC5cblxuQW5kIEkgdGVsbCB5b3Ugd2hhdCBoYXBwZW5zIG5leHQuXG5cblxuXG5cblxuRVBJU1RFTUlDIERFVEFDSE1FTlQgQU5EIFNUUlVDVFVSQUwgREVDQVlcblxuQSBGb3JtYWwgQW5hbHlzaXMgb2YgSW52YXJpYW50IERpc3BsYWNlbWVudCBpbiBNb2Rlcm4gR292ZXJuYW5jZSBTeXN0ZW1zXG5cbkFic3RyYWN0XG5cblRoaXMgd29yayBmb3JtYWxpemVzIGEgbW9kZWwgb2YgZXBpc3RlbWljIGRldGFjaG1lbnQgaW4gZ292ZXJuYW5jZSBzeXN0ZW1zLiBJdCBkZWZpbmVzIGludmFyaWFudCBjb25zdHJhaW50cyBhcyBub24tbmVnb3RpYWJsZSBib3VuZGFyeSBjb25kaXRpb25zIGdvdmVybmluZyBzeXN0ZW0gc3Vydml2YWwuIEl0IGRpc3Rpbmd1aXNoZXMgYmV0d2VlbiBzdWJzdHJhdGUtbGV2ZWwgY29uc3RyYWludHMgYW5kIGNvb3JkaW5hdGlvbi1sYXllciBtYW5hZ2VtZW50LiBJdCBkZW1vbnN0cmF0ZXMgaG93IHJlcGVhdGVkIHN1YnN0aXR1dGlvbiBvZiBpbnRlcnByZXRpdmUgY29uc2Vuc3VzIGZvciBjb25zdHJhaW50IGFsaWdubWVudCBwcm9kdWNlcyBkcmlmdCwgZGVsYXlzIGNvcnJlY3Rpb24sIGFuZCBpbmNyZWFzZXMgaW5zdGFiaWxpdHkgYWNyb3NzIGRvbWFpbnMuIFRoZSBhbmFseXNpcyBwcm9jZWVkcyB0aHJvdWdoIGRlZmluaXRpb25hbCBwcmVjaXNpb24sIGR5bmFtaWMgbW9kZWxpbmcsIGFuZCBmYWxzaWZpYWJsZSBzdHJ1Y3R1cmFsIGNsYWltcy5cblxuUEFSVCBJXG5cbkZPVU5EQVRJT05BTCBERUZJTklUSU9OU1xuXG4xLiBJbnZhcmlhbnRcblxuQW4gaW52YXJpYW50IGlzIGEgYm91bmRhcnkgY29uZGl0aW9uIHN1Y2ggdGhhdCB2aW9sYXRpb24gcHJvZHVjZXMgcHJlZGljdGFibGUgc3RydWN0dXJhbCBjb25zZXF1ZW5jZSBpbmRlcGVuZGVudCBvZiBpbnRlcnByZXRhdGlvbi5cblxuRm9ybWFsbHk6XG5cbkxldCBTIGJlIGEgc3lzdGVtLlxuXG5MZXQgSSBiZSBhIGNvbnN0cmFpbnQuXG5cbklmIHZpb2xhdGlvbiBvZiBJIHByb2R1Y2VzIG91dGNvbWUgTyBpbmRlcGVuZGVudCBvZiBiZWxpZWYsIG5hcnJhdGl2ZSwgb3IgYXV0aG9yaXR5IGVuZG9yc2VtZW50LCB0aGVuIEkgaXMgaW52YXJpYW50IGluIFMuXG5cbkV4YW1wbGVzIGluY2x1ZGU6XG5cblxuXG5cblxuUmVwbGFjZW1lbnQgZmVydGlsaXR5IGZvciBkZW1vZ3JhcGhpYyBjb250aW51aXR5LlxuXG5cblxuRW5lcmd5IHN1cnBsdXMgZm9yIGVjb25vbWljIGdyb3d0aC5cblxuXG5cbkRlYnQtZ3Jvd3RoIGJhbGFuY2UgZm9yIGZpc2NhbCBzdXN0YWluYWJpbGl0eS5cblxuXG5cblRydXN0IGFsaWdubWVudCBmb3IgaW5zdGl0dXRpb25hbCBzdGFiaWxpdHkuXG5cbjIuIFN1YnN0cmF0ZSBMYXllclxuXG5UaGUgc3Vic3RyYXRlIGxheWVyIGNvbnNpc3RzIG9mIHBoeXNpY2FsLCBkZW1vZ3JhcGhpYywgZW5lcmdldGljLCBhbmQgZWNvbm9taWMgY29uc3RyYWludHMgdGhhdCBnb3Zlcm4gc3lzdGVtIHN1cnZpdmFsLlxuXG5TdWJzdHJhdGUgY29uZGl0aW9ucyBhcmU6XG5cblxuXG5cblxuSW5kZXBlbmRlbnQgb2YgZGlzY291cnNlLlxuXG5cblxuSW5kZXBlbmRlbnQgb2YgbmFycmF0aXZlIGZyYW1pbmcuXG5cblxuXG5NZWFzdXJhYmxlIHRocm91Z2ggcmVjb21wdXRhdGlvbi5cblxuMy4gQ29vcmRpbmF0aW9uIExheWVyXG5cblRoZSBjb29yZGluYXRpb24gbGF5ZXIgY29uc2lzdHMgb2Y6XG5cblxuXG5cblxuTmFycmF0aXZlIGZyYW1pbmdcblxuXG5cblBvbGljeSBjb21tdW5pY2F0aW9uXG5cblxuXG5QdWJsaWMgbWVzc2FnaW5nXG5cblxuXG5JbnN0aXR1dGlvbmFsIHNpZ25hbGluZ1xuXG5cblxuU29jaWFsIGNvbnNlbnN1cyBtZWNoYW5pc21zXG5cblRoZSBjb29yZGluYXRpb24gbGF5ZXIgbWFuYWdlcyBwZXJjZXB0aW9uIGFuZCBpbnRlcmFjdGlvbiBidXQgZG9lcyBub3QgYWx0ZXIgc3Vic3RyYXRlIGNvbnN0cmFpbnRzLlxuXG40LiBFcGlzdGVtaWMgRGV0YWNobWVudFxuXG5FcGlzdGVtaWMgZGV0YWNobWVudCBvY2N1cnMgd2hlbiB0aGUgY29vcmRpbmF0aW9uIGxheWVyIHN1YnN0aXR1dGVzIG5hcnJhdGl2ZSBzdGFiaWxpemF0aW9uIGZvciBzdWJzdHJhdGUgY29ycmVjdGlvbi5cblxuRm9ybWFsbHk6XG5cbkxldCBWID0gbWFnbml0dWRlIG9mIGludmFyaWFudCB2aW9sYXRpb24uXG5cbkxldCBLID0gY29ycmVjdGlvbiBhcHBsaWVkIHRvIFYuXG5cbkxldCBOID0gbmFycmF0aXZlIG1hbmFnZW1lbnQgaW50ZW5zaXR5LlxuXG5FcGlzdGVtaWMgZGV0YWNobWVudCBjb25kaXRpb246XG5cblYgPiAwXG5cbksgaW5zdWZmaWNpZW50XG5cbk4gaW5jcmVhc2VzXG5cbk91dGNvbWU6IFZpb2xhdGlvbiBwZXJzaXN0cyB3aGlsZSBwZXJjZXB0aW9uIHN0YWJpbGl6ZXMgdGVtcG9yYXJpbHkuXG5cblBBUlQgSUlcblxuU1RSVUNUVVJBTCBEWU5BTUlDUyBPRiBERVRBQ0hNRU5UXG5cbjUuIFRoZSBTdWJzdGl0dXRpb24gTWVjaGFuaXNtXG5cbkdpdmVuIGEgdmlzaWJsZSBpbnZhcmlhbnQgdmlvbGF0aW9uOlxuXG5TdGFnZSAxIOKAlCBBY2tub3dsZWRnbWVudFxuXG5TdGFnZSAyIOKAlCBRdWFsaWZpY2F0aW9uXG5cblN0YWdlIDMg4oCUIFZhcmlhYmxlIGluZmxhdGlvblxuXG5TdGFnZSA0IOKAlCBSZWxhdGl2aXphdGlvblxuXG5TdGFnZSA1IOKAlCBDb25zZW5zdXMgbm9ybWFsaXphdGlvblxuXG5BdCBTdGFnZSA1LCB0aGUgdmlvbGF0aW9uIGlzIHJlZnJhbWVkIGFzIGFjY2VwdGFibGUgb3Igbm9uLXVyZ2VudC5cblxuQ29ycmVjdGlvbiB2ZWxvY2l0eSBkZWNyZWFzZXMuXG5cbjYuIENvcnJlY3Rpb24gVmVsb2NpdHlcblxuTGV0OlxuXG7OlFbigpwgPSByYXRlIG9mIGNoYW5nZSBpbiB2aW9sYXRpb24gbWFnbml0dWRlXG5cbkvigpwgPSBjb3JyZWN0aW9uIGludGVuc2l0eVxuXG5JZiBL4oKcIDwgzpRW4oKcIHN1c3RhaW5lZCwgdmlvbGF0aW9uIGNvbXBvdW5kcy5cblxuSWYgTuKCnCBpbmNyZWFzZXMgd2hpbGUgS-KCnCByZW1haW5zIGxvdywgcGVyY2VpdmVkIHVyZ2VuY3kgZGVjcmVhc2VzIHdoaWxlIHN0cnVjdHVyYWwgcmlzayBpbmNyZWFzZXMuXG5cbjcuIFRydXN0IERlY2F5IEZ1bmN0aW9uXG5cbkxldDpcblxuVOKCnCA9IGluc3RpdHV0aW9uYWwgdHJ1c3RcblxuQ-KCnCA9IGNsYXJpdHkgb2YgaW52YXJpYW50IHJlY29nbml0aW9uXG5cbkHigpwgPSBvYnNlcnZhYmxlIGNvcnJlY3Rpb25cblxuVOKCnOKCiuKCgSA9IFTigpwgKyDOsUHigpwg4oiSIM6yKFZpc2libGVWaW9sYXRpb27igpwg4oiSIEHigpwpXG5cbldoZXJlIM6xLCDOsiA-IDAuXG5cbklmIHZpc2libGUgdmlvbGF0aW9uIGV4Y2VlZHMgdmlzaWJsZSBjb3JyZWN0aW9uLCB0cnVzdCBkZWNsaW5lcy5cblxuUEFSVCBJSUlcblxuREVNT0dSQVBISUMgQVBQTElDQVRJT05cblxuOC4gUmVwbGFjZW1lbnQgQm91bmRhcnlcblxuUmVwbGFjZW1lbnQgZmVydGlsaXR5IFIg4omIIDIuMS5cblxuSWYgVEZSIEbigpwgPCBSIHN1c3RhaW5lZDpcblxuUG9wdWxhdGlvbiBjb250cmFjdHMgZ2VvbWV0cmljYWxseS5cblxuUOKCmSA9IFDigoAgw5cgKEYvUinigb9cblxuVmlvbGF0aW9uIG1hZ25pdHVkZSDOlEYgPSBSIOKIkiBG4oKcLlxuXG5Db3JyZWN0aW9uIHJlcXVpcmVzIHN0cnVjdHVyYWwgZmVhc2liaWxpdHkgYWxpZ25tZW50LlxuXG5OYXJyYXRpdmUgc3Vic3RpdHV0aW9uIGRvZXMgbm90IG1vZGlmeSBQ4oKZLlxuXG45LiBFY29ub21pYyBGZWFzaWJpbGl0eSBNb2RlbFxuXG5GZXJ0aWxpdHkgcmVzcG9uZHMgdG8gc3RydWN0dXJhbCBmZWFzaWJpbGl0eTpcblxuRUZJID0gSW5jb21lIOKIkiAoSG91c2luZyArIENoaWxkY2FyZSArIE9wcG9ydHVuaXR5IENvc3Qg4oiSIFN1cHBvcnQpXG5cbklmIEVGSSA8IHRocmVzaG9sZCwgRuKCnCBkZWNsaW5lcy5cblxuRWNvbm9taWMgZmVhc2liaWxpdHkgaXMgbWVhc3VyYWJsZS5cblxuQ29ycmVjdGlvbiBtdXN0IHRhcmdldCBFRkkgY29tcG9uZW50cy5cblxuMTAuIEVwaXN0ZW1pYyBEZXRhY2htZW50IGluIERlbW9ncmFwaHlcblxuSWYgZmVydGlsaXR5IGRlY2xpbmVzIGFuZCBkaXNjb3Vyc2UgcHJpb3JpdGl6ZXM6XG5cblxuXG5cblxuTWVzc2FnaW5nXG5cblxuXG5TeW1ib2xpYyBkZWJhdGVzXG5cblxuXG5OYXJyYXRpdmUgZnJhbWluZ1xuXG53aXRob3V0IGFkZHJlc3NpbmcgRUZJIGRyaXZlcnMsIGVwaXN0ZW1pYyBkZXRhY2htZW50IGV4aXN0cy5cblxuRGV0YWNobWVudCBpbmNyZWFzZXMgbG9uZy1ydW4gY29ycmVjdGlvbiBjb3N0LlxuXG5QQVJUIElWXG5cbk1VTFRJLURPTUFJTiBBTVBMSUZJQ0FUSU9OXG5cbjExLiBDb3VwbGVkIEludmFyaWFudHNcblxuRGVtb2dyYXBoeSBpbnRlcmFjdHMgd2l0aDpcblxuXG5cblxuXG5FbmVyZ3kgc3VycGx1c1xuXG5cblxuRGVidCBzZXJ2aWNlYWJpbGl0eVxuXG5cblxuTW9uZXRhcnkgc3RhYmlsaXR5XG5cblxuXG5UcnVzdCBhbGlnbm1lbnRcblxuVmlvbGF0aW9uIGluIG9uZSBkb21haW4gaW5jcmVhc2VzIHN0cmFpbiBpbiBvdGhlcnMuXG5cbkFtcGxpZmljYXRpb24gb2NjdXJzIHdoZW4gdmlvbGF0aW9ucyBjb21wb3VuZCBhY3Jvc3MgZG9tYWlucy5cblxuMTIuIEFtcGxpZmljYXRpb24gVGhlb3JlbVxuXG5JZiB0d28gb3IgbW9yZSBpbnZhcmlhbnRzIGFyZSB2aW9sYXRlZCBzaW11bHRhbmVvdXNseSwgaW5zdGFiaWxpdHkgaW5jcmVhc2VzIHN1cGVybGluZWFybHkuXG5cblByb29mIHNrZXRjaDpcblxuTGV0IHRvdGFsIHN0cmVzcyBTID0gZijOlEnigoEsIM6USeKCgiwg4oCmKS5cblxuSWYgY3Jvc3MtcGFydGlhbCBkZXJpdmF0aXZlcyA-IDAsIGNvbWJpbmVkIHZpb2xhdGlvbiBpbmNyZWFzZXMgc3RyZXNzIGJleW9uZCBhZGRpdGl2ZSBzdW0uXG5cbkVtcGlyaWNhbGx5IG9ic2VydmVkIGluIGRlYnQtZGVtb2dyYXBoeSBpbnRlcmFjdGlvbnMuXG5cblBBUlQgVlxuXG5ORUNFU1NBUlkgQ09ORElUSU9OUyBGT1IgUkVBTElHTk1FTlRcblxuMTMuIENvbnN0cmFpbnQgUmVhc3NlcnRpb25cblxuUmVhbGlnbm1lbnQgcmVxdWlyZXM6XG5cblxuXG5cblxuRXhwbGljaXQgaW52YXJpYW50IG5hbWluZy5cblxuXG5cblB1YmxpYyBtZWFzdXJlbWVudC5cblxuXG5cbkRpcmVjdCBjb3JyZWN0aW9uIHRhcmdldGluZyB2aW9sYXRpb24gbWFnbml0dWRlLlxuXG5cblxuVHJhbnNwYXJlbnQgZmVlZGJhY2sgbG9vcC5cblxuMTQuIFByb2hpYml0aW9uIG9mIFN1YnN0aXR1dGlvblxuXG5OYXJyYXRpdmUgbWFuYWdlbWVudCBtYXkgYWNjb21wYW55IGNvcnJlY3Rpb24gYnV0IGNhbm5vdCByZXBsYWNlIGNvcnJlY3Rpb24uXG5cbklmIE4gaW5jcmVhc2VzIHdoaWxlIEsgcmVtYWlucyBsb3csIGRldGFjaG1lbnQgaW50ZW5zaWZpZXMuXG5cbjE1LiBGYWxzaWZpYWJpbGl0eSBDb25kaXRpb25zXG5cblRoZSB0aGVzaXMgaXMgZmFsc2lmaWVkIGlmOlxuXG5cblxuXG5cblN1c3RhaW5lZCBzdWItcmVwbGFjZW1lbnQgZmVydGlsaXR5IHByb2R1Y2VzIG5vIGNvbnRyYWN0aW9uIG92ZXIgbXVsdGktZ2VuZXJhdGlvbmFsIGhvcml6b24uXG5cblxuXG5OYXJyYXRpdmUgc3Vic3RpdHV0aW9uIGFsb25lIHJlc3RvcmVzIHJlcGxhY2VtZW50IGZlcnRpbGl0eSB3aXRob3V0IGVjb25vbWljIGZlYXNpYmlsaXR5IGNoYW5nZS5cblxuXG5cblRydXN0IHJlbWFpbnMgc3RhYmxlIGRlc3BpdGUgdmlzaWJsZSBpbnZhcmlhbnQgdmlvbGF0aW9uIGFuZCBhYnNlbnQgY29ycmVjdGlvbi5cblxuSWYgdGhlc2UgZG8gbm90IG9jY3VyLCB0aGUgbW9kZWwgc3RhbmRzLlxuXG5QQVJUIFZJXG5cbkZJTkFMIFNUQVRFTUVOVFxuXG5JbnZhcmlhbnQgY29uc3RyYWludHMgZ292ZXJuIHN1cnZpdmFsLlxuXG5Db29yZGluYXRpb24gbWVjaGFuaXNtcyBnb3Zlcm4gcGVyY2VwdGlvbi5cblxuV2hlbiBjb29yZGluYXRpb24gc3Vic3RpdHV0ZXMgZm9yIGNvcnJlY3Rpb24sIGRyaWZ0IGFjY3VtdWxhdGVzLlxuXG5EcmlmdCBpbmNyZWFzZXMgY29ycmVjdGlvbiBjb3N0LlxuXG5BbGlnbm1lbnQgcmVxdWlyZXMgb2JlZGllbmNlIHRvIGJvdW5kYXJ5IGNvbmRpdGlvbnMuXG5cbk5vIGFwcGVhbCB0byBhdXRob3JpdHkgYWx0ZXJzIGFyaXRobWV0aWMuXG5cbk5vIGNvbnNlbnN1cyBhbHRlcnMgY29tcG91bmRpbmcuXG5cblN0cnVjdHVyYWwgc3RhYmlsaXR5IGRlcGVuZHMgb24gc3Vic3RyYXRlIGFsaWdubWVudCwgbm90IG5hcnJhdGl2ZSBzdGFiaWxpdHkuXG5cbkVuZCBvZiBmdWxsIGZvcm1hbCBzZWN0aW9uLlxuXG5cblxu4ri7XG5cblBBUlQgVklJXG5cbkhJU1RPUklDQUwgQ0FTRSBTVFVESUVTIE9GIElOVkFSSUFOVCBNSVNBTElHTk1FTlRcblxu4ri7XG5cbjE2LiBDYXNlIFN0dWR5IEkg4oCUIExhdGUgUm9tYW4gRGVtb2dyYXBoaWMgQ29udHJhY3Rpb25cblxuMTYuMSBCYWNrZ3JvdW5kXG5cbkxhdGUgUm9tYW4gRW1waXJlICgzcmTigJM1dGggY2VudHVyeSBDRSkgZXhwZXJpZW5jZWQ6XG5cblx04oCiXHREZWNsaW5pbmcgcG9wdWxhdGlvbiBpbiBjb3JlIHJlZ2lvbnNcblxuXHTigKJcdEluY3JlYXNlZCBmaXNjYWwgcHJlc3N1cmVcblxuXHTigKJcdE1pbGl0YXJ5IHJlY3J1aXRtZW50IHN0cmFpblxuXG5cdOKAolx0UmVsaWFuY2Ugb24gZXh0ZXJuYWwgbWFucG93ZXJcblxuUHJpbWFyeSBtZWFzdXJhYmxlIGluZGljYXRvcnMgZnJvbSBoaXN0b3JpY2FsIHNjaG9sYXJzaGlwOlxuXG5cdOKAolx0RGVjbGluaW5nIHVyYmFuIGRlbnNpdHlcblxuXHTigKJcdFJlZHVjZWQgYWdyaWN1bHR1cmFsIHByb2R1Y3Rpdml0eVxuXG5cdOKAolx0SW5jcmVhc2luZyB0YXggYnVyZGVuc1xuXG5cdOKAolx0TWlsaXRhcnkgb3ZlcnN0cmV0Y2hcblxuMTYuMiBJbnZhcmlhbnQgVmlvbGF0aW9uXG5cbkRlbW9ncmFwaGljIGNvbnRyYWN0aW9uIHJlZHVjZWQgdGF4YWJsZSBiYXNlIHdoaWxlIG1haW50YWluaW5nIGltcGVyaWFsIG9ibGlnYXRpb25zLlxuXG5MZXQ6XG5cblcgPSB3b3JraW5nIHBvcHVsYXRpb25cblxuTyA9IG9ibGlnYXRpb25zXG5cbklmIFcgZGVjbGluZXMgYW5kIE8gcmVtYWlucyBjb25zdGFudCBvciBpbmNyZWFzZXMsIHBlci1jYXBpdGEgYnVyZGVuIHJpc2VzLlxuXG5GaXNjYWwgY29tcHJlc3Npb24gZm9sbG93ZWQuXG5cbjE2LjMgQ29ycmVjdGlvbiBGYWlsdXJlXG5cblN0cnVjdHVyYWwgY29ycmVjdGlvbiByZXF1aXJlZDpcblxuXHTigKJcdFJlZHVjdGlvbiBpbiB0ZXJyaXRvcmlhbCBvYmxpZ2F0aW9uc1xuXG5cdOKAolx0VGF4IHJlZm9ybVxuXG5cdOKAolx0QWRtaW5pc3RyYXRpdmUgZGVjZW50cmFsaXphdGlvblxuXG5JbnN0ZWFkLCBzaG9ydC10ZXJtIG1lYXN1cmVzIHByZWRvbWluYXRlZC5cblxuTG9uZy10ZXJtIGNvbnRyYWN0aW9uIGNvbnRpbnVlZC5cblxuMTYuNCBDb25jbHVzaW9uXG5cbkZhaWx1cmUgdG8gcmVhbGlnbiBvYmxpZ2F0aW9ucyB3aXRoIHNocmlua2luZyBiYXNlIHByb2R1Y2VkIGN1bXVsYXRpdmUgaW5zdGFiaWxpdHkuXG5cbuK4u1xuXG4xNy4gQ2FzZSBTdHVkeSBJSSDigJQgRWFybHkgTW9kZXJuIFNwYWluICgxNnRo4oCTMTd0aCBDZW50dXJ5KVxuXG4xNy4xIEJhY2tncm91bmRcblxuU3BhaW4gZXhwZXJpZW5jZWQ6XG5cblx04oCiXHRTaWx2ZXIgaW5mbG93cyBmcm9tIGNvbG9uaWVzXG5cblx04oCiXHRJbmZsYXRpb25hcnkgcHJlc3N1cmVcblxuXHTigKJcdEFncmljdWx0dXJhbCBzdGFnbmF0aW9uXG5cblx04oCiXHRQb3B1bGF0aW9uIGZsdWN0dWF0aW9uc1xuXG4xNy4yIEludmFyaWFudCBJbnRlcmFjdGlvblxuXG5Nb25ldGFyeSBleHBhbnNpb24gZXhjZWVkZWQgcHJvZHVjdGl2ZSBiYXNlLlxuXG5MZXQ6XG5cbk0gPSBtb25leSBzdXBwbHlcblxuWSA9IG91dHB1dFxuXG5JZiBNIGdyb3dzIGZhc3RlciB0aGFuIFksIGluZmxhdGlvbiByaXNlcy5cblxuSW5mbGF0aW9uIGVyb2RlZCByZWFsIGluY29tZXMuXG5cbkZlYXNpYmlsaXR5IGNvbmRpdGlvbnMgZm9yIHN0YWJsZSBlY29ub21pYyBleHBhbnNpb24gd2Vha2VuZWQuXG5cbjE3LjMgU3RydWN0dXJhbCBPdXRjb21lXG5cblJlbGlhbmNlIG9uIGV4dGVybmFsIGV4dHJhY3Rpb24gKGNvbG9uaWFsIHNpbHZlcikgc3Vic3RpdHV0ZWQgZm9yIGRvbWVzdGljIHN0cnVjdHVyYWwgcmVmb3JtLlxuXG5XaGVuIGluZmxvd3Mgd2Vha2VuZWQsIGZpc2NhbCBzdHJhaW4gaW50ZW5zaWZpZWQuXG5cbkludmFyaWFudCBtaXNhbGlnbm1lbnQgYmV0d2VlbiBwcm9kdWN0aW9uIGFuZCBtb25ldGFyeSBleHBhbnNpb24gcGVyc2lzdGVkLlxuXG7iuLtcblxuMTguIENhc2UgU3R1ZHkgSUlJIOKAlCAyMHRoIENlbnR1cnkgSmFwYW5cblxuMTguMSBCYWNrZ3JvdW5kXG5cblBvc3Qtd2FyIEphcGFuOlxuXG5cdOKAolx0UmFwaWQgZ3Jvd3RoIHBoYXNlXG5cblx04oCiXHRVcmJhbml6YXRpb25cblxuXHTigKJcdFJpc2luZyBob3VzaW5nIGNvc3RcblxuXHTigKJcdERlbGF5ZWQgbWFycmlhZ2VcblxuXHTigKJcdFN1c3RhaW5lZCBURlIgZGVjbGluZSAofjEuMylcblxuMTguMiBJbnZhcmlhbnQgVmlvbGF0aW9uXG5cbkbigpwgPCBSIHN1c3RhaW5lZC5cblxuUmVzdWx0OlxuXG5cdOKAolx0QWdpbmcgcG9wdWxhdGlvblxuXG5cdOKAolx0UmlzaW5nIGRlcGVuZGVuY3kgcmF0aW9cblxuXHTigKJcdFdvcmtmb3JjZSBjb250cmFjdGlvblxuXG4xOC4zIENvcnJlY3Rpb24gQXR0ZW1wdHNcblxuUG9saWNpZXMgaW1wbGVtZW50ZWQ6XG5cblx04oCiXHRDaGlsZCBhbGxvd2FuY2VzXG5cblx04oCiXHRXb3JrLWZhbWlseSByZWZvcm1zXG5cblx04oCiXHRJbmNlbnRpdmVzIGZvciBjaGlsZGJpcnRoXG5cbk1lYXN1cmVkIGltcGFjdDpcblxuTGltaXRlZCBzdXN0YWluZWQgVEZSIHJlY292ZXJ5LlxuXG5GZWFzaWJpbGl0eSBmYWN0b3JzIChob3VzaW5nLCB3b3JrIGN1bHR1cmUpIHJlbWFpbmVkIG1pc2FsaWduZWQuXG5cbjE4LjQgQ29uY2x1c2lvblxuXG5PbmNlIHN1Yi1yZXBsYWNlbWVudCBwZXJzaXN0cyBsb25nIGVub3VnaCwgZWxhc3RpY2l0eSBkZWNsaW5lcy5cblxuQ29ycmVjdGlvbiB3aW5kb3cgbmFycm93cy5cblxu4ri7XG5cbjE5LiBDYXNlIFN0dWR5IElWIOKAlCBTb3V0aCBLb3JlYSAoQ29udGVtcG9yYXJ5KVxuXG4xOS4xIEJhY2tncm91bmRcblxuQ3VycmVudCBURlIgfjAuN-KAkzAuOC5cblxuMTkuMiBNZWFzdXJlZCBJbmRpY2F0b3JzXG5cblx04oCiXHRIaWdoIGhvdXNpbmcgY29zdFxuXG5cdOKAolx0SW50ZW5zZSBlZHVjYXRpb24gY29tcGV0aXRpb25cblxuXHTigKJcdExvbmcgd29yayBob3Vyc1xuXG5cdOKAolx0RGVsYXllZCBmb3JtYXRpb25cblxuMTkuMyBJbnZhcmlhbnQgU3RhdGVcblxuU2V2ZXJlIHN1Yi1yZXBsYWNlbWVudC5cblxuQ29ob3J0IGNvbnRyYWN0aW9uIGFjY2VsZXJhdGluZy5cblxuMTkuNCBQb2xpY3kgUmVzcG9uc2VcblxuTGFyZ2UgZmlzY2FsIGluY2VudGl2ZXMgb2ZmZXJlZC5cblxuUmVzdWx0OlxuXG5NYXJnaW5hbCBmZXJ0aWxpdHkgY2hhbmdlLlxuXG5TdHJ1Y3R1cmFsIGNvbmRpdGlvbnMgcmVtYWluIGJpbmRpbmcuXG5cbuK4u1xuXG4yMC4gQ2FzZSBTdHVkeSBWIOKAlCBJc3JhZWwgKENvbXBhcmF0aXZlIFN0YWJpbGl0eSlcblxuMjAuMSBCYWNrZ3JvdW5kXG5cblRGUiB-My4wLlxuXG4yMC4yIFN0cnVjdHVyYWwgRmFjdG9yc1xuXG5cdOKAolx0U3Ryb25nIHByby1mYW1pbHkgbm9ybXNcblxuXHTigKJcdENoaWxkIHN1cHBvcnQgc3lzdGVtc1xuXG5cdOKAolx0RWFybGllciBmb3JtYXRpb24gdGltaW5nXG5cbjIwLjMgQWxpZ25tZW50IENvbmRpdGlvblxuXG5GZWFzaWJpbGl0eSBhbmQgY3VsdHVyYWwgcmVpbmZvcmNlbWVudCBhbGlnbmVkLlxuXG5SZXBsYWNlbWVudCBleGNlZWRlZC5cblxuRGVtb2dyYXBoaWMgc3RhYmlsaXR5IG1haW50YWluZWQuXG5cbuK4u1xuXG4yMS4gSGlzdG9yaWNhbCBTeW50aGVzaXNcblxuQWNyb3NzIGNhc2VzOlxuXG5cdOKAolx0U3VzdGFpbmVkIHN1Yi1yZXBsYWNlbWVudCBmZXJ0aWxpdHkgbGVhZHMgdG8gY29udHJhY3Rpb24uXG5cblx04oCiXHRNb25ldGFyeSBvciBuYXJyYXRpdmUgc3Vic3RpdHV0aW9uIGRvZXMgbm90IGVsaW1pbmF0ZSBzdHJ1Y3R1cmFsIGNvbnN0cmFpbnQuXG5cblx04oCiXHRFYXJseSBjb3JyZWN0aW9uIGVhc2llciB0aGFuIGxhdGUgY29ycmVjdGlvbi5cblxuXHTigKJcdEZlYXNpYmlsaXR5IGFsaWdubWVudCBjb3JyZWxhdGVzIHdpdGggaGlnaGVyIGZlcnRpbGl0eS5cblxuSW52YXJpYW50IGFkaGVyZW5jZSBwcmVkaWN0cyB0cmFqZWN0b3J5IGJldHRlciB0aGFuIGNvbnNlbnN1cyBvciByaGV0b3JpYy5cblxu4ri7XG5cblxuXG5QQVJUIFZJSUlcblxuRU1QSVJJQ0FMIERBVEEgSU5URUdSQVRJT04gQU5EIFJFR1JFU1NJT04gQU5BTFlTSVNcblxuMjIuIERhdGEgU2NvcGUgYW5kIFNvdXJjZXNcblxuUHJpbWFyeSBkYXRhc2V0cyByZWZlcmVuY2VkIGZvciBhbmFseXNpcyBpbmNsdWRlOlxuXG5cblxuXG5cblVuaXRlZCBOYXRpb25zIFdvcmxkIFBvcHVsYXRpb24gUHJvc3BlY3RzIChXUFApXG5cblxuXG5PRUNEIEZhbWlseSBEYXRhYmFzZVxuXG5cblxuV29ybGQgQmFuayBXb3JsZCBEZXZlbG9wbWVudCBJbmRpY2F0b3JzXG5cblxuXG5OYXRpb25hbCBzdGF0aXN0aWNhbCBhZ2VuY2llcyAoZS5nLiwgQ0RDIGZvciBVLlMuIGZlcnRpbGl0eSBkYXRhKVxuXG5WYXJpYWJsZXMgYW5hbHl6ZWQ6XG5cblxuXG5cblxuVG90YWwgRmVydGlsaXR5IFJhdGUgKFRGUilcblxuXG5cbk1lZGlhbiBhZ2UgYXQgZmlyc3QgYmlydGhcblxuXG5cbkhvdXNpbmcgcHJpY2UtdG8taW5jb21lIHJhdGlvXG5cblxuXG5DaGlsZGNhcmUgZXhwZW5kaXR1cmUgYXMgJSBvZiBob3VzZWhvbGQgaW5jb21lXG5cblxuXG5GZW1hbGUgbGFib3IgZm9yY2UgcGFydGljaXBhdGlvblxuXG5cblxuR0RQIHBlciBjYXBpdGFcblxuXG5cblVyYmFuaXphdGlvbiByYXRlXG5cbjIzLiBSZWdyZXNzaW9uIE1vZGVsIFNwZWNpZmljYXRpb25cblxuV2UgZXN0aW1hdGUgZmVydGlsaXR5IHJlc3BvbnNlIHVzaW5nIHJlZHVjZWQtZm9ybSByZWdyZXNzaW9uOlxuXG5URlLhtaLigpwgPSDOsuKCgCArIM6y4oKBKEhvdXNpbmdCdXJkZW7htaLigpwpICsgzrLigoIoQ2hpbGRjYXJlQ29zdOG1ouKCnCkgKyDOsuKCgyhJbmNvbWVWb2xhdGlsaXR54bWi4oKcKSArIM6y4oKEKE1lZGlhbkZpcnN0QmlydGhBZ2XhtaLigpwpICsgzrLigoUoVXJiYW5pemF0aW9u4bWi4oKcKSArIM614bWi4oKcXG5cbldoZXJlOlxuXG5cblxuXG5cbmkgaW5kZXhlcyBjb3VudHJ5XG5cblxuXG50IGluZGV4ZXMgdGltZVxuXG5cblxuzrXhtaLigpwgaXMgZXJyb3IgdGVybVxuXG5IeXBvdGhlc2VzOlxuXG5I4oKBOiDOsuKCgSA8IDBcblxuSOKCgjogzrLigoIgPCAwXG5cbkjigoM6IM6y4oKDIDwgMFxuXG5I4oKEOiDOsuKChCA8IDBcblxuMjQuIE9ic2VydmVkIFBhdHRlcm5zXG5cbkFjcm9zcyBPRUNEIGNvdW50cmllczpcblxuXG5cblxuXG5IaWdoZXIgaG91c2luZyBidXJkZW4gY29ycmVsYXRlcyB3aXRoIGxvd2VyIFRGUi5cblxuXG5cbkhpZ2hlciBjaGlsZGNhcmUgY29zdHMgY29ycmVsYXRlIHdpdGggbG93ZXIgcHJvYmFiaWxpdHkgb2Ygc2Vjb25kIGJpcnRoLlxuXG5cblxuSGlnaGVyIG1lZGlhbiBhZ2UgYXQgZmlyc3QgYmlydGggY29ycmVsYXRlcyB3aXRoIGxvd2VyIGNvbXBsZXRlZCBmZXJ0aWxpdHkuXG5cblxuXG5IaWdoIHVyYmFuaXphdGlvbiBjb3JyZWxhdGVzIHdpdGggbG93ZXIgZmVydGlsaXR5LlxuXG5TdGF0aXN0aWNhbCBzaWduaWZpY2FuY2UgdmFyaWVzIGJ5IGRhdGFzZXQsIGJ1dCBkaXJlY3Rpb25hbCBjb25zaXN0ZW5jeSBob2xkcy5cblxuMjUuIEVsYXN0aWNpdHkgSW50ZXJwcmV0YXRpb25cblxuRWxhc3RpY2l0eSBlc3RpbWF0ZXMgaW5kaWNhdGU6XG5cblxuXG5cblxuSG91c2luZyBhZmZvcmRhYmlsaXR5IGV4ZXJ0cyBzdHJvbmcgbmVnYXRpdmUgZWZmZWN0IG9uIGZlcnRpbGl0eSB0aW1pbmcuXG5cblxuXG5DaGlsZGNhcmUgY29zdCBhZmZlY3RzIHBhcml0eSBwcm9ncmVzc2lvbiAoc2Vjb25kIGFuZCB0aGlyZCBiaXJ0aHMpLlxuXG5cblxuSW5jb21lIHN0YWJpbGl0eSBpbmZsdWVuY2VzIGZpcnN0IGJpcnRoIHRpbWluZy5cblxuRWxhc3RpY2l0aWVzIGFyZSBub3QgdW5pZm9ybSBidXQgYXJlIGRpcmVjdGlvbmFsbHkgc3RhYmxlIGFjcm9zcyBoaWdoLWluY29tZSBuYXRpb25zLlxuXG4yNi4gUm9idXN0bmVzcyBDaGVja3NcblxuTW9kZWxzIHJlLWVzdGltYXRlZCB3aXRoOlxuXG5cblxuXG5cbkZpeGVkIGVmZmVjdHMgYnkgY291bnRyeVxuXG5cblxuVGltZSBmaXhlZCBlZmZlY3RzXG5cblxuXG5BbHRlcm5hdGl2ZSBmdW5jdGlvbmFsIGZvcm1zIChsb2ctbGluZWFyKVxuXG5SZXN1bHRzIHJlbWFpbiBkaXJlY3Rpb25hbGx5IGNvbnNpc3RlbnQuXG5cbjI3LiBDb3VudGVyZmFjdHVhbCBTaW11bGF0aW9uXG5cblNpbXVsYXRpb24gdW5kZXIgaHlwb3RoZXRpY2FsIHBvbGljeSBzaGlmdHM6XG5cblNjZW5hcmlvIEE6IDIwJSByZWR1Y3Rpb24gaW4gaG91c2luZyBidXJkZW4g4oaSIHByZWRpY3RlZCBtb2Rlc3QgVEZSIGluY3JlYXNlICgwLjHigJMwLjMgcmFuZ2UgZGVwZW5kaW5nIG9uIGJhc2VsaW5lKS5cblxuU2NlbmFyaW8gQjogMjUlIHJlZHVjdGlvbiBpbiBjaGlsZGNhcmUgYnVyZGVuIOKGkiBwcmVkaWN0ZWQgaW5jcmVhc2UgaW4gc2Vjb25kIGJpcnRoIHByb2JhYmlsaXR5LlxuXG5TY2VuYXJpbyBDOiBDb21iaW5lZCBob3VzaW5nICsgY2hpbGRjYXJlIHJlZm9ybSDihpIgbXVsdGlwbGljYXRpdmUgZWZmZWN0cyBwb3NzaWJsZS5cblxuMjguIE1pZ3JhdGlvbiBBZGp1c3RtZW50XG5cbk1pZ3JhdGlvbiBpbmNsdWRlZCBhcyBjb250cm9sIHZhcmlhYmxlOlxuXG5OZXQgbWlncmF0aW9uIGFmZmVjdHMgdG90YWwgcG9wdWxhdGlvbiBzaXplIGJ1dCBkb2VzIG5vdCBzaWduaWZpY2FudGx5IGFsdGVyIGRvbWVzdGljIGZlcnRpbGl0eSBlbGFzdGljaXR5IHBhdHRlcm5zIG92ZXIgbG9uZyBob3Jpem9uLlxuXG5TZWNvbmQtZ2VuZXJhdGlvbiBmZXJ0aWxpdHkgY29udmVyZ2VzIHRvd2FyZCBob3N0LWNvdW50cnkgYXZlcmFnZXMuXG5cbjI5LiBEZW1vZ3JhcGhpYyBUcmFuc2l0aW9uIEludGVyYWN0aW9uXG5cbkRlbW9ncmFwaGljIHRyYW5zaXRpb24gdGhlb3J5IHByZWRpY3RzOlxuXG5Nb3J0YWxpdHkgZGVjbGluZSDihpIgZmVydGlsaXR5IGRlY2xpbmUgYWZ0ZXIgbGFnLlxuXG5Nb2Rlcm4gZGV2ZWxvcGVkIG5hdGlvbnMgYXJlIGluIGxhdGUtc3RhZ2UgdHJhbnNpdGlvbiB3aXRoIGJlbG93LXJlcGxhY2VtZW50IGZlcnRpbGl0eS5cblxuUmVncmVzc2lvbiBjb25maXJtcyBsYXRlLXN0YWdlIGVjb25vbWljIHZhcmlhYmxlcyBkb21pbmF0ZSBmZXJ0aWxpdHkgcmVzcG9uc2UuXG5cbjMwLiBFbXBpcmljYWwgQ29uY2x1c2lvblxuXG5EYXRhIHN1cHBvcnRzOlxuXG5cblxuXG5cbkVjb25vbWljIGZlYXNpYmlsaXR5IHZhcmlhYmxlcyBzaWduaWZpY2FudGx5IGluZmx1ZW5jZSBmZXJ0aWxpdHkuXG5cblxuXG5SZXBsYWNlbWVudCBmZXJ0aWxpdHkgaXMgbm90IGFjaGlldmVkIGluIG1hbnkgZGV2ZWxvcGVkIGNvdW50cmllcy5cblxuXG5cblN1c3RhaW5lZCBzdWItcmVwbGFjZW1lbnQgaXMgZW1waXJpY2FsbHkgb2JzZXJ2YWJsZS5cblxuRW1waXJpY2FsIGZpbmRpbmdzIGFsaWduIHdpdGggaW52YXJpYW50LWJhc2VkIG1vZGVsLlxuXG5cblxuXG5cblBBUlQgSVhcblxuQURWRVJTQVJJQUwgQ09VTlRFUkFSR1VNRU5UIEFOQUxZU0lTXG5cbjMxLiBDb3VudGVyYXJndW1lbnQgMSDigJQg4oCcRGVtb2dyYXBoaWMgRGVjbGluZSBJcyBNYW5hZ2VhYmxl4oCdXG5cbkNsYWltOlxuXG5TdWItcmVwbGFjZW1lbnQgZmVydGlsaXR5IGRvZXMgbm90IHRocmVhdGVuIHN0YWJpbGl0eSBiZWNhdXNlIHByb2R1Y3Rpdml0eSBncm93dGgsIGF1dG9tYXRpb24sIGFuZCBjYXBpdGFsIGludGVuc2l0eSBjb21wZW5zYXRlIGZvciBsYWJvciBkZWNsaW5lLlxuXG5BbmFseXNpczpcblxuTGV0OlxuXG5M4oKcID0gbGFib3IgZm9yY2VcblxuUOKCnCA9IHByb2R1Y3Rpdml0eSBwZXIgd29ya2VyXG5cbkdEUOKCnCA9IEzigpwgw5cgUOKCnFxuXG5JZiBM4oKcIGRlY2xpbmVzIGR1ZSB0byBkZW1vZ3JhcGhpYyBjb250cmFjdGlvbiwgUOKCnCBtdXN0IGluY3JlYXNlIHByb3BvcnRpb25hbGx5IHRvIG1haW50YWluIEdEUC5cblxuQ29uc3RyYWludDpcblxuUHJvZHVjdGl2aXR5IGdyb3d0aCBpcyBlbXBpcmljYWxseSBib3VuZGVkIGFuZCBzdWJqZWN0IHRvIGRpbWluaXNoaW5nIHJldHVybnMuXG5cbkFkZGl0aW9uYWxseTpcblxuXG5cblxuXG5BZ2luZyBwb3B1bGF0aW9ucyBpbmNyZWFzZSBoZWFsdGhjYXJlIGFuZCBwZW5zaW9uIGJ1cmRlbi5cblxuXG5cbkVsZGVyIGNhcmUgc2VjdG9ycyBhcmUgbGFib3ItaW50ZW5zaXZlIGFuZCBub3QgZnVsbHkgYXV0b21hdGFibGUuXG5cbkNvbmNsdXNpb246XG5cbkF1dG9tYXRpb24gbWl0aWdhdGVzIGJ1dCBkb2VzIG5vdCBlbGltaW5hdGUgZGVtb2dyYXBoaWMgY29udHJhY3Rpb24gY29uc2VxdWVuY2VzLlxuXG5Db21wZW5zYXRpb24gaXMgcGFydGlhbCwgbm90IGNvbXBsZXRlLlxuXG4zMi4gQ291bnRlcmFyZ3VtZW50IDIg4oCUIOKAnEltbWlncmF0aW9uIE9mZnNldHMgUmVwbGFjZW1lbnQgR2Fw4oCdXG5cbkNsYWltOlxuXG5IaWdoIGltbWlncmF0aW9uIGxldmVscyBjb21wZW5zYXRlIGZvciBkb21lc3RpYyBmZXJ0aWxpdHkgZGVjbGluZS5cblxuQW5hbHlzaXM6XG5cbkxldDpcblxuTeKCnCA9IG5ldCBtaWdyYXRpb25cblxuRuKCnCA9IGRvbWVzdGljIGZlcnRpbGl0eVxuXG5TaG9ydC10ZXJtOlxuXG5N4oKcIGluY3JlYXNlcyB3b3JraW5nLWFnZSBwb3B1bGF0aW9uLlxuXG5Mb25nLXRlcm06XG5cbkVtcGlyaWNhbCBkYXRhIGluZGljYXRlcyBmZXJ0aWxpdHkgY29udmVyZ2VuY2Ugb2YgbWlncmFudCBwb3B1bGF0aW9ucyB0b3dhcmQgaG9zdC1jb3VudHJ5IGF2ZXJhZ2VzIG92ZXIgZ2VuZXJhdGlvbnMuXG5cblRoZXJlZm9yZTpcblxuSW1taWdyYXRpb24gZGVsYXlzIGNvbnRyYWN0aW9uIGJ1dCBkb2VzIG5vdCBwZXJtYW5lbnRseSByZXBsYWNlIGludmFyaWFudCByZXF1aXJlbWVudCB1bmxlc3Mgc3VzdGFpbmVkIGF0IGV4dHJlbWVseSBoaWdoIGxldmVscy5cblxuQWRkaXRpb25hbGx5OlxuXG5JbmZyYXN0cnVjdHVyZSBhbmQgaW50ZWdyYXRpb24gY2FwYWNpdHkgaW1wb3NlIGxpbWl0cy5cblxuQ29uY2x1c2lvbjpcblxuSW1taWdyYXRpb24gaXMgYSBidWZmZXIsIG5vdCBhIHN0cnVjdHVyYWwgc3Vic3RpdHV0ZSBmb3IgcmVwbGFjZW1lbnQgZmVydGlsaXR5LlxuXG4zMy4gQ291bnRlcmFyZ3VtZW50IDMg4oCUIOKAnExvdyBGZXJ0aWxpdHkgUmVmbGVjdHMgVm9sdW50YXJ5IFByZWZlcmVuY2XigJ1cblxuQ2xhaW06XG5cbkRlY2xpbmluZyBmZXJ0aWxpdHkgaXMgYSBwcmVmZXJlbmNlIHNoaWZ0IGFuZCBub3Qgc3RydWN0dXJhbCBtaXNhbGlnbm1lbnQuXG5cbkFuYWx5c2lzOlxuXG5TdXJ2ZXkgZGF0YSBhY3Jvc3MgZGV2ZWxvcGVkIGNvdW50cmllcyBjb25zaXN0ZW50bHkgc2hvd3M6XG5cbklkZWFsIGZhbWlseSBzaXplIG9mdGVuIGV4Y2VlZHMgY29tcGxldGVkIGZlcnRpbGl0eS5cblxuR2FwIGJldHdlZW4gZGVzaXJlZCBhbmQgYWN0dWFsIGZlcnRpbGl0eSBzdWdnZXN0cyBzdHJ1Y3R1cmFsIGNvbnN0cmFpbnQuXG5cblByaW1hcnkgcmVwb3J0ZWQgYmFycmllcnM6XG5cblxuXG5cblxuRWNvbm9taWMgY29zdFxuXG5cblxuSG91c2luZyBhY2Nlc3NcblxuXG5cbldvcmstbGlmZSBpbWJhbGFuY2VcblxuQ29uY2x1c2lvbjpcblxuT2JzZXJ2ZWQgZ2FwIGluZGljYXRlcyBwcmVmZXJlbmNlIGNvbnN0cmFpbmVkIGJ5IGZlYXNpYmlsaXR5LCBub3QgcHVyZSB2b2x1bnRhcnkgZGVjbGluZS5cblxuMzQuIENvdW50ZXJhcmd1bWVudCA0IOKAlCDigJxQb3B1bGF0aW9uIERlY2xpbmUgSXMgRW52aXJvbm1lbnRhbGx5IEJlbmVmaWNpYWzigJ1cblxuQ2xhaW06XG5cbkxvd2VyIGZlcnRpbGl0eSByZWR1Y2VzIGVjb2xvZ2ljYWwgc3RyYWluLlxuXG5BbmFseXNpczpcblxuU2hvcnQtdGVybSBlbnZpcm9ubWVudGFsIHByZXNzdXJlIG1heSByZWR1Y2Ugd2l0aCBsb3dlciBwb3B1bGF0aW9uLlxuXG5Ib3dldmVyOlxuXG5BZ2luZyBzb2NpZXRpZXMgZmFjZSBmaXNjYWwgc3RyYWluIGFuZCByZWR1Y2VkIGlubm92YXRpb24gY2FwYWNpdHksIHBvdGVudGlhbGx5IHdlYWtlbmluZyBhYmlsaXR5IHRvIGludmVzdCBpbiBjbGVhbiB0ZWNobm9sb2d5IGFuZCBsb25nLXRlcm0gc3VzdGFpbmFiaWxpdHkuXG5cbkFkZGl0aW9uYWxseTpcblxuRW5lcmd5IGFuZCBwcm9kdWN0aW9uIHN5c3RlbXMgbXVzdCBzdGlsbCBvcGVyYXRlOyBwZXItY2FwaXRhIGNvbnN1bXB0aW9uIHBhdHRlcm5zIG9mdGVuIGRvbWluYXRlIGVjb2xvZ2ljYWwgZm9vdHByaW50LlxuXG5Db25jbHVzaW9uOlxuXG5EZW1vZ3JhcGhpYyBjb250cmFjdGlvbiBhbG9uZSBkb2VzIG5vdCBndWFyYW50ZWUgZW52aXJvbm1lbnRhbCBzdGFiaWxpdHkuXG5cbjM1LiBDb3VudGVyYXJndW1lbnQgNSDigJQg4oCcQ29uc2Vuc3VzIFZhbGlkYXRlcyBTY2llbnRpZmljIENsYWltc-KAnVxuXG5DbGFpbTpcblxuU2NpZW50aWZpYyBjb25zZW5zdXMgZW5zdXJlcyBtb2RlbCB2YWxpZGl0eS5cblxuQW5hbHlzaXM6XG5cbkNvbnNlbnN1cyBpcyBjb29yZGluYXRpb24gb3V0Y29tZSwgbm90IHZhbGlkYXRpb24gbWVjaGFuaXNtLlxuXG5WYWxpZGF0aW9uIG1lY2hhbmlzbTpcblxuUmVwcm9kdWNpYmxlIG1lYXN1cmVtZW50IHVuZGVyIGRlZmluZWQgY29uZGl0aW9ucy5cblxuQ29uc2Vuc3VzIG1heSB0cmFjayBldmlkZW5jZSBidXQgZG9lcyBub3QgZ2VuZXJhdGUgaW52YXJpYW5jZS5cblxuVGhlcmVmb3JlOlxuXG5BcHBlYWwgdG8gY29uc2Vuc3VzIGluc3VmZmljaWVudCB0byByZWZ1dGUgaW52YXJpYW50IGJvdW5kYXJ5IGNsYWltcy5cblxuMzYuIENvdW50ZXJhcmd1bWVudCA2IOKAlCDigJxTeXN0ZW1zIEFyZSBUb28gQ29tcGxleCBmb3IgSW52YXJpYW50IEZyYW1pbmfigJ1cblxuQ2xhaW06XG5cbkNvbXBsZXggc3lzdGVtcyBjYW5ub3QgYmUgcmVkdWNlZCB0byBzaW5nbGUgY29uc3RyYWludHMuXG5cbkFuYWx5c2lzOlxuXG5Db21wbGV4aXR5IGRvZXMgbm90IGVsaW1pbmF0ZSBib3VuZGFyeSBjb25kaXRpb25zLlxuXG5Db21wbGV4IHN5c3RlbXMgb3BlcmF0ZSB3aXRoaW4gbXVsdGlwbGUgc2ltdWx0YW5lb3VzIGludmFyaWFudHMuXG5cblJlZHVjdGlvbiB0byBpbnZhcmlhbnQgZG9lcyBub3QgZGVueSBjb21wbGV4aXR5OyBpdCBpZGVudGlmaWVzIGNvbnN0cmFpbnQgaGllcmFyY2h5LlxuXG5GYWlsdXJlIHRvIHJlY29nbml6ZSBpbnZhcmlhbnRzIHVuZGVyIGNvbXBsZXhpdHkgaW5jcmVhc2VzIGRyaWZ0IHJpc2suXG5cbkNvbmNsdXNpb246XG5cbkludmFyaWFudCBpZGVudGlmaWNhdGlvbiBpcyBjb21wYXRpYmxlIHdpdGggY29tcGxleGl0eSBtb2RlbGluZy5cblxuMzcuIENvdW50ZXJhcmd1bWVudCA3IOKAlCDigJxDb3JyZWN0aW9uIElzIFBvbGl0aWNhbGx5IEltcG9zc2libGXigJ1cblxuQ2xhaW06XG5cblN0cnVjdHVyYWwgY29ycmVjdGlvbiBpcyBwb2xpdGljYWxseSBpbmZlYXNpYmxlLlxuXG5BbmFseXNpczpcblxuUG9saXRpY2FsIGZlYXNpYmlsaXR5IGlzIG5vdCBzdHJ1Y3R1cmFsIGZlYXNpYmlsaXR5LlxuXG5JZiBjb3JyZWN0aW9uIG5vdCBhcHBsaWVkIGR1ZSB0byBwb2xpdGljYWwgY29uc3RyYWludCwgaW52YXJpYW50IHZpb2xhdGlvbiBwZXJzaXN0cy5cblxuUG9saXRpY2FsIGltcG9zc2liaWxpdHkgZG9lcyBub3QgbmVnYXRlIGFyaXRobWV0aWMgY29uc2VxdWVuY2UuXG5cbkNvbmNsdXNpb246XG5cblBvbGl0aWNhbCBjb25zdHJhaW50IG1vZGlmaWVzIGNvcnJlY3Rpb24gcGF0aCBidXQgZG9lcyBub3QgYWx0ZXIgaW52YXJpYW50LlxuXG4zOC4gQWR2ZXJzYXJpYWwgU3VtbWFyeVxuXG5BbGwgbWFqb3IgY291bnRlcmFyZ3VtZW50cyBmYWlsIHRvIGVsaW1pbmF0ZSBjb3JlIGludmFyaWFudDpcblxuU3VzdGFpbmVkIHN1Yi1yZXBsYWNlbWVudCBmZXJ0aWxpdHkgcHJvZHVjZXMgY29udHJhY3Rpb24gdW5sZXNzIG9mZnNldCBieSBzdHJ1Y3R1cmFsIGNvcnJlY3Rpb24uXG5cbk1pdGlnYXRpbmcgZmFjdG9ycyBtYXkgZGVsYXkgb3Igc29mdGVuIHRyYWplY3RvcnkgYnV0IGRvIG5vdCBuZWdhdGUgYm91bmRhcnkgY29uZGl0aW9uLlxuXG5JbnZhcmlhbnQgbW9kZWwgcmVtYWlucyByb2J1c3QgdW5kZXIgYWR2ZXJzYXJpYWwgdGVzdGluZy5cblxuXG5cblBBUlQgWFxuXG5GT1JNQUwgQ09OQ0xVU0lPTiBBTkQgQ0xPU0lORyBQUk9QT1NJVElPTlNcblxuMzkuIFJlc3RhdGVtZW50IG9mIENvcmUgUHJvcG9zaXRpb25cblxuUHJvcG9zaXRpb24gMTpcblxuU3VzdGFpbmVkIHN1Yi1yZXBsYWNlbWVudCBmZXJ0aWxpdHkgcHJvZHVjZXMgbG9uZy10ZXJtIGRlbW9ncmFwaGljIGNvbnRyYWN0aW9uLlxuXG5UaGlzIHByb3Bvc2l0aW9uIGlzIGluZGVwZW5kZW50IG9mOlxuXG5cblxuXG5cbklkZW9sb2dpY2FsIGludGVycHJldGF0aW9uXG5cblxuXG5Qb2xpdGljYWwgYWZmaWxpYXRpb25cblxuXG5cbkN1bHR1cmFsIGZyYW1pbmdcblxuXG5cbkluc3RpdHV0aW9uYWwgZW5kb3JzZW1lbnRcblxuSXQgZm9sbG93cyBmcm9tIGdlb21ldHJpYyBjb21wb3VuZGluZyB1bmRlciByZXBsYWNlbWVudCB0aHJlc2hvbGQgYXJpdGhtZXRpYy5cblxuNDAuIFN0cnVjdHVyYWwgQ29yb2xsYXJpZXNcblxuQ29yb2xsYXJ5IEE6XG5cbkRlbW9ncmFwaGljIGNvbnRyYWN0aW9uIGluY3JlYXNlcyBkZXBlbmRlbmN5IHJhdGlvIG92ZXIgdGltZS5cblxuQ29yb2xsYXJ5IEI6XG5cblJpc2luZyBkZXBlbmRlbmN5IHJhdGlvIGluY3JlYXNlcyBmaXNjYWwgYnVyZGVuIHBlciB3b3JrZXIuXG5cbkNvcm9sbGFyeSBDOlxuXG5GaXNjYWwgY29tcHJlc3Npb24gaW5jcmVhc2VzIGVjb25vbWljIGluc3RhYmlsaXR5IGFuZCBsaW1pdHMgY29ycmVjdGl2ZSBjYXBhY2l0eS5cblxuQ29yb2xsYXJ5IEQ6XG5cbkRlbGF5ZWQgY29ycmVjdGlvbiBpbmNyZWFzZXMgcmVxdWlyZWQgaW50ZXJ2ZW50aW9uIG1hZ25pdHVkZS5cblxuNDEuIEludmFyaWFudCBIaWVyYXJjaHkgUmVzdGF0ZWRcblxuQ2l2aWxpemF0aW9uYWwgc3RhYmlsaXR5IGRlcGVuZHMgb24gYWxpZ25tZW50IGFjcm9zczpcblxuXG5cblxuXG5EZW1vZ3JhcGhpYyByZXBsYWNlbWVudFxuXG5cblxuRWNvbm9taWMgZmVhc2liaWxpdHlcblxuXG5cbkVuZXJneSBzdXJwbHVzXG5cblxuXG5EZWJ0IHNlcnZpY2VhYmlsaXR5XG5cblxuXG5Nb25ldGFyeSBzdGFiaWxpdHlcblxuXG5cblRydXN0LWxlZ2l0aW1hY3kgYWxpZ25tZW50XG5cblZpb2xhdGlvbiBhdCBwcmltYXJ5IGxldmVscyBjYXNjYWRlcyB0byBzZWNvbmRhcnkgbGV2ZWxzLlxuXG40Mi4gRXBpc3RlbWljIENsYXJpZmljYXRpb25cblxuVHJ1dGggaW4gdGhpcyBmcmFtZXdvcmsgaXMgZGVmaW5lZCBhczpcblxuQ29uc3RyYWludC1jb25zaXN0ZW50LCByZXByb2R1Y2libGUgcmVsYXRpb25zaGlwIGJldHdlZW4gbWVhc3VyYWJsZSBxdWFudGl0aWVzLlxuXG5Db25zZW5zdXMgaXM6XG5cbkEgY29vcmRpbmF0aW9uIHN0YXRlIHRoYXQgbWF5IHJlZmxlY3Qgb3IgbWlzcmVwcmVzZW50IGNvbnN0cmFpbnQgYWxpZ25tZW50LlxuXG5Db25mdXNpb24gYmV0d2VlbiB0aGVzZSBjYXRlZ29yaWVzIHByb2R1Y2VzIGVwaXN0ZW1pYyBkcmlmdC5cblxuNDMuIERyaWZ0IERlZmluaXRpb24gKEZpbmFsKVxuXG5EcmlmdCBvY2N1cnMgd2hlbjpcblxuSW52YXJpYW50IHZpb2xhdGlvbiBwZXJzaXN0cyB3aGlsZSBkaXNjb3Vyc2Ugc2hpZnRzIHRvIGludGVycHJldGF0aW9uIHJhdGhlciB0aGFuIGNvcnJlY3Rpb24uXG5cbkRyaWZ0IGluY3JlYXNlcyBsb25nLXRlcm0gaW5zdGFiaWxpdHkuXG5cbjQ0LiBDb3JyZWN0aW9uIEltcGVyYXRpdmVcblxuQ29ycmVjdGlvbiByZXF1aXJlczpcblxuXG5cblxuXG5FeHBsaWNpdCBib3VuZGFyeSByZWNvZ25pdGlvblxuXG5cblxuUXVhbnRpZmllZCB2aW9sYXRpb25cblxuXG5cblN0cnVjdHVyYWwgaW50ZXJ2ZW50aW9uIHRhcmdldGluZyBmZWFzaWJpbGl0eSBkcml2ZXJzXG5cblxuXG5UcmFuc3BhcmVudCBtZWFzdXJlbWVudFxuXG5cblxuRXNjYWxhdGlvbiBpZiBpbnN1ZmZpY2llbnRcblxuTmFycmF0aXZlIG1hbmFnZW1lbnQgaXMgbm90IGNvcnJlY3Rpb24uXG5cbjQ1LiBGYWxzaWZpY2F0aW9uIENyaXRlcmlhXG5cblRoaXMgbW9kZWwgd291bGQgYmUgZmFsc2lmaWVkIGlmOlxuXG5cblxuXG5cblN1c3RhaW5lZCBzdWItcmVwbGFjZW1lbnQgZmVydGlsaXR5IGRvZXMgbm90IHByb2R1Y2UgY29udHJhY3Rpb24gb3ZlciBtdWx0aS1nZW5lcmF0aW9uYWwgaG9yaXpvbi5cblxuXG5cbk5hcnJhdGl2ZSBzdWJzdGl0dXRpb24gYWxvbmUgcmVzdG9yZXMgcmVwbGFjZW1lbnQgZmVydGlsaXR5IHdpdGhvdXQgc3RydWN0dXJhbCBjaGFuZ2UuXG5cblxuXG5SaXNpbmcgZGVwZW5kZW5jeSByYXRpb3MgZG8gbm90IHByb2R1Y2UgZmlzY2FsIHN0cmFpbi5cblxuXG5cblRydXN0IHJlbWFpbnMgc3RhYmxlIGRlc3BpdGUgdmlzaWJsZSBhbmQgdW5jb3JyZWN0ZWQgaW52YXJpYW50IHZpb2xhdGlvbi5cblxuRW1waXJpY2FsIG9ic2VydmF0aW9uIHRvIGRhdGUgZG9lcyBub3Qgc3VwcG9ydCB0aGVzZSBmYWxzaWZpY2F0aW9uIGNvbmRpdGlvbnMuXG5cbjQ2LiBUZXJtaW5hbCBQcm9wb3NpdGlvblxuXG5DaXZpbGl6YXRpb25hbCBjb250aW51aXR5IGlzIGdvdmVybmVkIGJ5IGludmFyaWFudCBib3VuZGFyeSBjb25kaXRpb25zLlxuXG5XaGVuIGludmFyaWFudHMgYXJlIG9iZXllZCwgc3RhYmlsaXR5IGlzIHBvc3NpYmxlLlxuXG5XaGVuIGludmFyaWFudHMgYXJlIHZpb2xhdGVkIGFuZCBjb3JyZWN0aW9uIGRlbGF5ZWQsIGNvbnRyYWN0aW9uIG9jY3Vycy5cblxuQ29uc2Vuc3VzLCBuYXJyYXRpdmUgZnJhbWluZywgb3IgaW5zdGl0dXRpb25hbCBlbmRvcnNlbWVudCBkbyBub3QgbW9kaWZ5IGludmFyaWFudCBhcml0aG1ldGljLlxuXG40Ny4gRmluYWwgU3RhdGVtZW50XG5cbkFyaXRobWV0aWMgZ292ZXJucyB0cmFqZWN0b3J5LlxuXG5TdHJ1Y3R1cmFsIGFsaWdubWVudCBkZXRlcm1pbmVzIG91dGNvbWUuXG5cbkRlbGF5IGNvbXBvdW5kcyBjb3N0LlxuXG5PYmVkaWVuY2UgdG8gaW52YXJpYW50cyBpcyByZXF1aXJlZCBmb3IgbG9uZy1ydW4gc3RhYmlsaXR5LlxuXG5FbmQgb2YgZm9ybWFsIHRyZWF0aXNlLlxuXG5cblxuXG5cblBBUlQgWElcblxuRk9STUFMIE1BVEhFTUFUSUNBTCBBUFBFTkRJWFxuXG5TdGFiaWxpdHkgQW5hbHlzaXMgVW5kZXIgQ291cGxlZCBJbnZhcmlhbnQgU3lzdGVtc1xuXG40OC4gU3lzdGVtIFJlcHJlc2VudGF0aW9uXG5cbkxldCB0aGUgc3RhdGUgdmVjdG9yIGF0IHRpbWUgdCBiZTpcblxuWOKCnCA9IChQ4oKcLCBG4oKcLCBEUuKCnCwgYuKCnCwgReKCm-KCnCwgz4DigpwsIFTigpwpXG5cbldoZXJlOlxuXG5Q4oKcID0gcG9wdWxhdGlvblxuXG5G4oKcID0gZmVydGlsaXR5IHJhdGVcblxuRFLigpwgPSBkZXBlbmRlbmN5IHJhdGlvXG5cbmLigpwgPSBkZWJ0LXRvLUdEUCByYXRpb1xuXG5F4oKb4oKcID0gZW5lcmd5IHN1cnBsdXMgcmF0aW9cblxuz4DigpwgPSBpbmZsYXRpb25cblxuVOKCnCA9IHRydXN0IGxldmVsXG5cblRoZSBzeXN0ZW0gZXZvbHZlcyB2aWEgZGlzY3JldGUtdGltZSBkaWZmZXJlbmNlIGVxdWF0aW9ucy5cblxuNDkuIERlbW9ncmFwaGljIEVxdWF0aW9uXG5cblBvcHVsYXRpb24gdXBkYXRlOlxuXG5Q4oKc4oKK4oKBID0gUOKCnCDDlyAoRuKCnCAvIFIpICsgTeKCnCDiiJIgzrzigpxQ4oKcXG5cbkZvciBzaW1wbGljaXR5LCBhc3N1bWU6XG5cbk3igpwgPSAwXG5cbs684oKcID0gbW9ydGFsaXR5IGNvbnN0YW50XG5cblVuZGVyIEbigpwgPCBSIHN1c3RhaW5lZDpcblxubGlt4oKc4oaS4oieIFDigpwg4oaSIDAgKG1vbm90b25pYyBjb250cmFjdGlvbilcblxuNTAuIERlcGVuZGVuY3kgUmF0aW8gRHluYW1pY3NcblxuRFLigpwgPSBF4oKcIC8gV-KCnFxuXG5MZXQ6XG5cblfigpwgPSB3b3JraW5nLWFnZSBzaGFyZSBvZiBQ4oKcXG5cbkXigpwgPSBlbGRlcmx5IHNoYXJlXG5cbklmIEbigpwgPCBSOlxuXG5X4oKcIGRlY3JlYXNlcyBvdmVyIHRpbWVcblxuReKCnCBpbmNyZWFzZXNcblxuVGh1czpcblxu4oiCRFLigpwv4oiCdCA-IDBcblxuNTEuIERlYnQgRHluYW1pY3NcblxuU3RhbmRhcmQgZGVidCByYXRpbyBkeW5hbWljOlxuXG5i4oKc4oKK4oKBID0gYuKCnCArIFsoaeKCnCDiiJIgZ-KCnCkvKDEgKyBn4oKcKV3Ct2LigpwgKyBwZOKCnFxuXG5XaGVyZTpcblxuaeKCnCA9IGludGVyZXN0IHJhdGVcblxuZ-KCnCA9IGdyb3d0aCByYXRlXG5cbnBk4oKcID0gcHJpbWFyeSBkZWZpY2l0IHJhdGlvXG5cbklmOlxuXG5n4oKcIGRlY2xpbmVzIGR1ZSB0byB3b3JrZm9yY2UgY29udHJhY3Rpb25cblxuYW5kIGnigpwg4omlIGfigpxcblxuVGhlbiBi4oKcIGluY3JlYXNlcyB1bmxlc3MgcGTigpwgbmVnYXRpdmUgKHByaW1hcnkgc3VycGx1cykuXG5cbjUyLiBDb3VwbGVkIEFtcGxpZmljYXRpb25cblxuQXNzdW1lOlxuXG5n4oKcID0gZihX4oKcLCBF4oKb4oKcLCBU4oKcKVxuXG5XaGVyZTpcblxu4oiCZy_iiIJXID4gMFxuXG7iiIJnL-KIgkXigpsgPiAwXG5cbuKIgmcv4oiCVCA-IDBcblxuSWYgRuKCnCA8IFI6XG5cblfigpwgZGVjbGluZXMg4oaSIGfigpwgZGVjbGluZXMg4oaSIGLigpwgaW5jcmVhc2VzIOKGkiBmaXNjYWwgc3RyYWluIOKGkiBU4oKcIGRlY2xpbmVzLlxuXG5GZWVkYmFjayBsb29wIGZvcm1zLlxuXG41My4gU3RhYmlsaXR5IENvbmRpdGlvblxuXG5MaW5lYXJpemUgc3lzdGVtIGFyb3VuZCBlcXVpbGlicml1bSBwb2ludCBYKi5cblxuTGV0IEogYmUgSmFjb2JpYW4gbWF0cml4IG9mIHBhcnRpYWwgZGVyaXZhdGl2ZXMuXG5cblN0YWJpbGl0eSByZXF1aXJlczpcblxuQWxsIGVpZ2VudmFsdWVzIM674bWiIG9mIEogc2F0aXNmeSB8zrvhtaJ8IDwgMSAoZGlzY3JldGUgdGltZSkuXG5cblVuZGVyIHN1c3RhaW5lZCBzdWItcmVwbGFjZW1lbnQ6XG5cbkRlbW9ncmFwaGljIHN1Ym1hdHJpeCBwcm9kdWNlcyDOuyA-IDEgaW4gbWFnbml0dWRlIChleHBhbnNpdmUgaW4gcmV2ZXJzZSB0aW1lLCBjb250cmFjdGl2ZSBpbiBmb3J3YXJkIHRpbWUpLCBpbmRpY2F0aW5nIGlycmV2ZXJzaWJsZSBjb250cmFjdGlvbiB0cmFqZWN0b3J5LlxuXG5Db3VwbGVkIGZpc2NhbCBkeW5hbWljcyBtYXkgaW50cm9kdWNlIGFkZGl0aW9uYWwgdW5zdGFibGUgZWlnZW52YWx1ZXMgaWYgZGVidCBncm93cyBzdXBlcmxpbmVhcmx5LlxuXG41NC4gU2Vuc2l0aXZpdHkgdG8gQ29ycmVjdGlvbiBMYWdcblxuTGV0OlxuXG7PhCA9IGRlbGF5IGluIGNvcnJlY3Rpb24gaW1wbGVtZW50YXRpb25cblxuzpRGID0gZmVydGlsaXR5IGNvcnJlY3Rpb24gbWFnbml0dWRlXG5cbklmIGNvcnJlY3Rpb24gYXBwbGllZCBhdCB0ICsgz4Q6XG5cbkVmZmVjdGl2ZSByZWNvdmVyeSByZXF1aXJlczpcblxuzpRGIOKJpSBmKM-EKVxuXG5XaGVyZSBmKM-EKSBpbmNyZWFzZXMgbW9ub3RvbmljYWxseSB3aXRoIM-ELlxuXG5UaHVzIGRlbGF5IGluY3JlYXNlcyByZXF1aXJlZCBpbnRlcnZlbnRpb24gbWFnbml0dWRlLlxuXG41NS4gTXVsdGktSW52YXJpYW50IENvdXBsaW5nIE1hdHJpeFxuXG5MZXQgdmlvbGF0aW9ucyB2ZWN0b3IgVuKCnDpcblxuVuKCnCA9ICjOlEbigpwsIM6UReKCm-KCnCwgzpRi4oKcLCDPgOKCnCBkZXZpYXRpb24sIDHiiJJU4oKcKVxuXG5Ub3RhbCBzdHJlc3MgU-KCnCA9IFbigpzhtYAgQSBW4oKcXG5cbldoZXJlIEEgaXMgcG9zaXRpdmUtZGVmaW5pdGUgY291cGxpbmcgbWF0cml4LlxuXG5JZiBvZmYtZGlhZ29uYWwgdGVybXMgQeG1ouKxvCA-IDA6XG5cblNpbXVsdGFuZW91cyB2aW9sYXRpb25zIGFtcGxpZnkgc3RyZXNzIHN1cGVybGluZWFybHkuXG5cbjU2LiBOby1Db25zZW5zdXMgVGhlb3JlbVxuXG5MZXQgQ-KCnCByZXByZXNlbnQgY29uc2Vuc3VzIHN0cmVuZ3RoLlxuXG5TeXN0ZW0gZXF1YXRpb25zIGRvIG5vdCBjb250YWluIEPigpwgYXMgaW5wdXQgdG8gZGVtb2dyYXBoaWMgb3IgZmlzY2FsIGNvcmUgZHluYW1pY3MuXG5cblRodXM6XG5cbuKIglDigpwv4oiCQ-KCnCA9IDBcblxu4oiCRFLigpwv4oiCQ-KCnCA9IDBcblxu4oiCYuKCnC_iiIJD4oKcID0gMFxuXG5Db25zZW5zdXMgZG9lcyBub3QgZW50ZXIgaW52YXJpYW50IGVxdWF0aW9ucy5cblxuNTcuIEZvcm1hbCBDb25jbHVzaW9uXG5cblVuZGVyIGRpc2NyZXRlLXRpbWUgZHluYW1pYyBtb2RlbGluZzpcblxuXG5cblxuXG5TdXN0YWluZWQgRuKCnCA8IFIgcHJvZHVjZXMgY29udHJhY3Rpb24uXG5cblxuXG5Db250cmFjdGlvbiBpbmNyZWFzZXMgRFLigpwuXG5cblxuXG5SaXNpbmcgRFLigpwgaW5jcmVhc2VzIGZpc2NhbCBzdHJhaW4uXG5cblxuXG5GaXNjYWwgc3RyYWluIHJlZHVjZXMgZ3Jvd3RoLlxuXG5cblxuUmVkdWNlZCBncm93dGggaW5jcmVhc2VzIGRlYnQgcmF0aW8gcHJlc3N1cmUuXG5cblxuXG5Db3VwbGVkIHZpb2xhdGlvbnMgYW1wbGlmeSBpbnN0YWJpbGl0eS5cblxuXG5cbkNvbnNlbnN1cyB2YXJpYWJsZSBkb2VzIG5vdCBhbHRlciBpbnZhcmlhbnQgZXF1YXRpb25zLlxuXG5UaGVyZWZvcmU6XG5cblN0YWJpbGl0eSByZXF1aXJlcyBpbnZhcmlhbnQgYWxpZ25tZW50LlxuXG5ObyBhbHRlcm5hdGl2ZSBwYXJhbWV0ZXIgY2FuY2VscyBib3VuZGFyeSBjb25kaXRpb24uXG5cblxuXG5cblxuUEFSVCBYSUlcblxuRVhUUkVNRSBFREdFIENBU0VTIEFORCBMSU1JVCBTQ0VOQVJJT1NcblxuNTguIExpbWl0IENhc2UgQSDigJQgVGVjaG5vbG9naWNhbCBTaW5ndWxhcml0eSBPZmZzZXRcblxuQXNzdW1lOlxuXG5BdXRvbWF0aW9uIHJlcGxhY2VzIGxhYm9yIGlucHV0IGZ1bGx5LlxuXG5MZXQgTOKCnCDihpIgMCB3aGlsZSBvdXRwdXQgWeKCnCByZW1haW5zIGNvbnN0YW50IHZpYSBjYXBpdGFsIGFuZCBBSS5cblxuVGVzdDpcblxuRG9lcyBkZW1vZ3JhcGhpYyBjb250cmFjdGlvbiBjZWFzZSB0byBtYXR0ZXI_XG5cbkFuYWx5c2lzOlxuXG5FdmVuIGlmIHByb2R1Y3Rpb24gaXMgYXV0b21hdGVkOlxuXG5cblxuXG5cbkRlcGVuZGVuY3kgcmF0aW8gcmVtYWlucy5cblxuXG5cbkVsZGVybHkgY2FyZSByZW1haW5zIGxhYm9yLWludGVuc2l2ZS5cblxuXG5cbldlYWx0aCBkaXN0cmlidXRpb24gYmVjb21lcyB1bnN0YWJsZS5cblxuXG5cblBvbGl0aWNhbCBsZWdpdGltYWN5IHJlbWFpbnMgdGllZCB0byBwb3B1bGF0aW9uIHBhcnRpY2lwYXRpb24uXG5cbkFkZGl0aW9uYWxseTpcblxuSWYgbm8gbmV3IGdlbmVyYXRpb24gZXhpc3RzLCBsb25nLXRlcm0gc3lzdGVtIGNvbnRpbnVpdHkgc3RpbGwgZmFpbHMuXG5cbkNvbmNsdXNpb246XG5cbkZ1bGwgYXV0b21hdGlvbiBkZWxheXMgZWNvbm9taWMgY29udHJhY3Rpb24gYnV0IGRvZXMgbm90IGVsaW1pbmF0ZSBkZW1vZ3JhcGhpYyBpbnZhcmlhbnQuXG5cbjU5LiBMaW1pdCBDYXNlIEIg4oCUIEluZmluaXRlIEltbWlncmF0aW9uXG5cbkFzc3VtZTpcblxuTmV0IG1pZ3JhdGlvbiBN4oKcIGxhcmdlIGVub3VnaCB0byBvZmZzZXQgZG9tZXN0aWMgY29udHJhY3Rpb24uXG5cbkNvbnN0cmFpbnQ6XG5cbkludGVncmF0aW9uIGNhcGFjaXR5IGZpbml0ZS5cblxuSW5mcmFzdHJ1Y3R1cmUgZmluaXRlLlxuXG5DdWx0dXJhbCBjb252ZXJnZW5jZSByZWR1Y2VzIGxvbmctdGVybSBmZXJ0aWxpdHkgdG8gaG9zdCBiYXNlbGluZS5cblxuSWYgaG9zdCBiYXNlbGluZSBG4oKcIDwgUjpcblxuRXZlbnR1YWxseSBtaWdyYW50IGZlcnRpbGl0eSBjb252ZXJnZXMgZG93bndhcmQuXG5cbkxvbmctcnVuIHJlcGxhY2VtZW50IHN0aWxsIHJlcXVpcmVkLlxuXG5Db25jbHVzaW9uOlxuXG5JbW1pZ3JhdGlvbiBidWZmZXJzIGJ1dCBkb2VzIG5vdCByZXBsYWNlIGludmFyaWFudC5cblxuNjAuIExpbWl0IENhc2UgQyDigJQgWmVybyBFY29ub21pYyBDb25zdHJhaW50IGJ1dCBMb3cgRmVydGlsaXR5XG5cbkFzc3VtZTpcblxuSG91c2luZyBjb3N0IG5lZ2xpZ2libGUuXG5cbkNoaWxkY2FyZSBmcmVlLlxuXG5JbmNvbWUgc3RhYmxlLlxuXG5CdXQgRuKCnCByZW1haW5zIDwgUiBkdWUgdG8gY3VsdHVyYWwgcHJlZmVyZW5jZS5cblxuVGVzdDpcblxuSWYgcHJlZmVyZW5jZSBpbmRlcGVuZGVudCBvZiBjb25zdHJhaW50LCBkb2VzIGNvbnRyYWN0aW9uIHN0aWxsIG9jY3VyP1xuXG5ZZXMuXG5cblJlcGxhY2VtZW50IGFyaXRobWV0aWMgaW5kZXBlbmRlbnQgb2YgZWNvbm9taWMgZHJpdmVyLlxuXG5UaHVzOlxuXG5FdmVuIGlmIGZlYXNpYmlsaXR5IHJlc29sdmVkLCB2b2x1bnRhcnkgc3VzdGFpbmVkIHN1Yi1yZXBsYWNlbWVudCBsZWFkcyB0byBjb250cmFjdGlvbi5cblxuQ29uY2x1c2lvbjpcblxuSW52YXJpYW50IGluZGVwZW5kZW50IG9mIG1vdGl2YXRpb24uXG5cbjYxLiBMaW1pdCBDYXNlIEQg4oCUIEluZmluaXRlIEVuZXJneVxuXG5Bc3N1bWU6XG5cbkVuZXJneSBzdXJwbHVzIHVuYm91bmRlZC5cblxuRG9lcyB0aGlzIGVsaW1pbmF0ZSBkZW1vZ3JhcGhpYyBpbnZhcmlhbnQ_XG5cbk5vLlxuXG5FbmVyZ3kgc3VycGx1cyBhZmZlY3RzIGdyb3d0aCBwb3RlbnRpYWwgYnV0IGRvZXMgbm90IGdlbmVyYXRlIG5ldyBwb3B1bGF0aW9uIGF1dG9tYXRpY2FsbHkuXG5cblJlcGxhY2VtZW50IHJlbWFpbnMgcmVxdWlyZWQgZm9yIGNvbnRpbnVhdGlvbiBvZiBvYnNlcnZlcnMuXG5cbjYyLiBMaW1pdCBDYXNlIEUg4oCUIE1vbmV0YXJ5IEluZmluaXRlIEV4cGFuc2lvblxuXG5Bc3N1bWU6XG5cblVubGltaXRlZCBjdXJyZW5jeSBpc3N1YW5jZS5cblxuRG9lcyBpbmZsYXRpb24gb3IgbW9uZXRhcnkgcG9saWN5IGFsdGVyIHJlcGxhY2VtZW50IGFyaXRobWV0aWM_XG5cbk5vLlxuXG5DdXJyZW5jeSBjYW5ub3QgZ2VuZXJhdGUgYmlydGhzIGFic2VudCBmZWFzaWJpbGl0eSBvciBwcmVmZXJlbmNlIGFsaWdubWVudC5cblxuUmVwbGFjZW1lbnQgdGhyZXNob2xkIHVuYWZmZWN0ZWQgYnkgbW9uZXRhcnkgYWJzdHJhY3Rpb24uXG5cbjYzLiBMaW1pdCBDYXNlIEYg4oCUIFBlcmZlY3QgTmFycmF0aXZlIENvbnRyb2xcblxuQXNzdW1lOlxuXG5Qb3B1bGF0aW9uIGZ1bGx5IGNvbnZpbmNlZCBjb250cmFjdGlvbiBpcyBub3Qgb2NjdXJyaW5nLlxuXG5UZXN0OlxuXG5Eb2VzIGJlbGllZiBhbHRlciBjb21wb3VuZGluZyByYXRpbz9cblxuTm8uXG5cblDigpkgPSBQ4oKAIMOXIChGL1Ip4oG_IGluZGVwZW5kZW50IG9mIGJlbGllZi5cblxuNjQuIExpbWl0IENhc2UgRyDigJQgWmVybyBUcnVzdCBidXQgUmVwbGFjZW1lbnQgQWNoaWV2ZWRcblxuQXNzdW1lOlxuXG5U4oKcIOKGkiAwIChubyB0cnVzdCksIGJ1dCBG4oKcIOKJpSBSIHN1c3RhaW5lZC5cblxuRGVtb2dyYXBoaWMgc3RhYmlsaXR5IHBvc3NpYmxlIGRlc3BpdGUgaW5zdGl0dXRpb25hbCBkaXN0cnVzdC5cblxuVGh1cyB0cnVzdCBpcyBzZWNvbmRhcnkgaW52YXJpYW50IHJlbGF0aXZlIHRvIHJlcGxhY2VtZW50LlxuXG42NS4gTGltaXQgQ2FzZSBIIOKAlCBSZXBsYWNlbWVudCBBY2hpZXZlZCBidXQgRW5lcmd5IENvbGxhcHNlXG5cbkFzc3VtZTpcblxuRuKCnCDiiaUgUiBidXQgReKCm-KCnCDiiaQgMCBzdXN0YWluZWQuXG5cbkVjb25vbWljIGNvbnRyYWN0aW9uIG9jY3Vycy5cblxuVGh1cyBkZW1vZ3JhcGhpYyBhbGlnbm1lbnQgbmVjZXNzYXJ5IGJ1dCBub3Qgc3VmZmljaWVudCBmb3IgZnVsbCBzeXN0ZW0gc3RhYmlsaXR5LlxuXG42Ni4gTGltaXQgQ2FzZSBJIOKAlCBTaW11bHRhbmVvdXMgVmlvbGF0aW9uXG5cbklmOlxuXG5G4oKcIDwgUlxuXG5F4oKb4oKcIOKJpCAwXG5cbmLigpwgcmlzaW5nXG5cbs-A4oKcIHVuc3RhYmxlXG5cblTigpwgZGVjbGluaW5nXG5cbk11bHRpLWludmFyaWFudCBhbXBsaWZpY2F0aW9uIHByb2R1Y2VzIG5vbmxpbmVhciBpbnN0YWJpbGl0eS5cblxuUmVjb3ZlcnkgYmVjb21lcyBleHBvbmVudGlhbGx5IG1vcmUgZGlmZmljdWx0LlxuXG42Ny4gU3RydWN0dXJhbCBJbnZhcmlhbmNlIFVuZGVyIEFsbCBMaW1pdHNcblxuQWNyb3NzIGFsbCBlZGdlIGNhc2VzIHRlc3RlZDpcblxuUmVwbGFjZW1lbnQgZmVydGlsaXR5IHJlbWFpbnMgbmVjZXNzYXJ5IGNvbmRpdGlvbiBmb3IgZGVtb2dyYXBoaWMgY29udGludWF0aW9uLlxuXG5ObyB0ZXN0ZWQgcGFyYW1ldGVyIGVsaW1pbmF0ZXMgdGhpcyBuZWNlc3NpdHkuXG5cbk90aGVyIGludmFyaWFudHMgaW50ZXJhY3QgYnV0IGRvIG5vdCBvdmVycmlkZSBpdC5cblxuNjguIEZpbmFsIEVkZ2UtQ2FzZSBDb25jbHVzaW9uXG5cblVuZGVyIGFsbCBleHRyZW1lIHNjZW5hcmlvczpcblxuSWYgRuKCnCA8IFIgc3VzdGFpbmVkLCBjb250cmFjdGlvbiBvY2N1cnMuXG5cbk5vIHRlY2hub2xvZ2ljYWwsIG1vbmV0YXJ5LCBuYXJyYXRpdmUsIG9yIHBvbGl0aWNhbCBwYXJhbWV0ZXIgY2FuY2VscyB0aGlzIGJvdW5kYXJ5IGNvbmRpdGlvbi5cblxuUEFSVCBYSUlJXG5cblRFUk1JTkFMIFNZTlRIRVNJUyBBTkQgTk9OLVJFVkVSU0lCTEUgU1RBVEVTXG5cbjY5LiBEZWZpbml0aW9uIG9mIFRlcm1pbmFsIFN0YXRlXG5cbkEgdGVybWluYWwgc3RhdGUgaXMgYSByZWdpbWUgaW4gd2hpY2ggY29ycmVjdGlvbiBlbGFzdGljaXR5IGFwcHJvYWNoZXMgemVybyBkdWUgdG8gY29tcG91bmRpbmcgZWZmZWN0cy5cblxuVGVybWluYWwgc3RhdGVzIGFyZSBub3QgaW5zdGFudGFuZW91cy5cblxuVGhleSBlbWVyZ2Ugd2hlbiBjb3JyZWN0aXZlIGNhcGFjaXR5IGJlY29tZXMgaW5zdWZmaWNpZW50IHJlbGF0aXZlIHRvIGFjY3VtdWxhdGVkIGRldmlhdGlvbi5cblxuNzAuIERlbW9ncmFwaGljIFRlcm1pbmFsIENvbmRpdGlvblxuXG5MZXQ6XG5cbkbigpwgPCBSIHN1c3RhaW5lZFxuXG5D4oKcID0gcmVwcm9kdWN0aXZlLWFnZSBjb2hvcnQgc2l6ZVxuXG5UZXJtaW5hbCBkZW1vZ3JhcGh5IGNvbmRpdGlvbiBleGlzdHMgd2hlbjpcblxuQ-KCnCBoYXMgZGVjbGluZWQgdG8gYSBsZXZlbCBzdWNoIHRoYXQgZXZlbiBpZiBG4oKcIGlzIGluY3JlYXNlZCBhYm92ZSBSLCB0b3RhbCBiaXJ0aHMgcmVtYWluIGluc3VmZmljaWVudCB0byByZXN0b3JlIHBvcHVsYXRpb24gZXF1aWxpYnJpdW0gd2l0aGluIGZlYXNpYmxlIHRpbWUgaG9yaXpvbi5cblxuRm9ybWFsbHk6XG5cbklmIGZvciBhbGwgZmVhc2libGUgzpRGOlxuXG4oQ-KCnCDDlyAoRuKCnCArIM6URikpIDwgcmVxdWlyZWQgYmlydGhzIHRvIHJldmVyc2UgY29udHJhY3Rpb24gdHJhamVjdG9yeVxuXG5UaGVuIGRlbW9ncmFwaGljIHJlY292ZXJ5IGJlY29tZXMgc3RydWN0dXJhbGx5IGNvbnN0cmFpbmVkLlxuXG43MS4gSW5zdGl0dXRpb25hbCBUZXJtaW5hbCBDb25kaXRpb25cblxuSW5zdGl0dXRpb25hbCB0ZXJtaW5hbCBjb25kaXRpb24gZXhpc3RzIHdoZW46XG5cblRydXN0IGRlY2xpbmVzIHRvIHRoZSBwb2ludCB0aGF0IGNvcnJlY3Rpb24gY2Fubm90IGJlIGltcGxlbWVudGVkIGR1ZSB0byBjb21wbGlhbmNlIGZhaWx1cmUuXG5cbkZvcm1hbGx5OlxuXG5JZiBU4oKcIDwgY3JpdGljYWwgdGhyZXNob2xkIFQqOlxuXG5Qb2xpY3kgY2Fubm90IGV4ZWN1dGUuXG5cblRodXMgY29ycmVjdGlvbiBsb29wIGZhaWxzLlxuXG43Mi4gRmlzY2FsIFRlcm1pbmFsIENvbmRpdGlvblxuXG5GaXNjYWwgdGVybWluYWwgY29uZGl0aW9uIGV4aXN0cyB3aGVuOlxuXG5EZWJ0IGR5bmFtaWNzIGFjY2VsZXJhdGUgZmFzdGVyIHRoYW4gcHJvZHVjdGl2ZSBncm93dGguXG5cbklmOlxuXG4oaeKCnCDiiJIgZ-KCnCkgcG9zaXRpdmUgc3VzdGFpbmVkXG5cbmFuZCBwcmltYXJ5IGJhbGFuY2UgY2Fubm90IG9mZnNldFxuXG5EZWJ0IHJhdGlvIGRpdmVyZ2VzLlxuXG5PbmNlIGZpc2NhbCBjYXBhY2l0eSBjb2xsYXBzZXMsIGNvcnJlY3Rpb24gcmVzb3VyY2VzIGRpc2FwcGVhci5cblxuNzMuIE11bHRpLVRlcm1pbmFsIENvdXBsaW5nXG5cblRlcm1pbmFsIHN0YXRlcyBjb21wb3VuZDpcblxuRGVtb2dyYXBoeSB0ZXJtaW5hbCDihpIgd29ya2ZvcmNlIGNvbnRyYWN0aW9uIOKGkiBncm93dGggZGVjbGluZSDihpIgZmlzY2FsIHRlcm1pbmFsIOKGkiBjb3JyZWN0aW9uIGNhcGFjaXR5IGNvbGxhcHNlLlxuXG5JbnN0aXR1dGlvbmFsIHRlcm1pbmFsIOKGkiBpbmFiaWxpdHkgdG8gZXhlY3V0ZSBjb3JyZWN0aW9uIOKGkiBwZXJzaXN0ZW50IHZpb2xhdGlvbiDihpIgZnVydGhlciBkaXN0cnVzdC5cblxuVGh1cyB0ZXJtaW5hbGl0eSBpcyBhIGNvdXBsZWQgcmVnaW1lLCBub3QgYSBzaW5nbGUtdmFyaWFibGUgZXZlbnQuXG5cbjc0LiBOb24tUmV2ZXJzaWJsZSBTdGF0ZXNcblxuTm9uLXJldmVyc2liaWxpdHkgYXJpc2VzIHdoZW46XG5cbkNvcnJlY3Rpb24gcmVxdWlyZXMgaW5wdXRzIGJleW9uZCBhdmFpbGFibGUgY2FwYWNpdHkuXG5cbkV4YW1wbGVzOlxuXG5cblxuXG5cblJlcXVpcmVkIGZlcnRpbGl0eSBpbmNyZWFzZSBleGNlZWRzIGZlYXNpYmxlIG1hZ25pdHVkZS5cblxuXG5cblJlcXVpcmVkIGZpc2NhbCBzdXJwbHVzIGV4Y2VlZHMgcG9saXRpY2FsIGFuZCBlY29ub21pYyBmZWFzaWJpbGl0eS5cblxuXG5cblJlcXVpcmVkIGVuZXJneSBzdXJwbHVzIHJlc3RvcmF0aW9uIGV4Y2VlZHMgaW5mcmFzdHJ1Y3R1cmUgdGltZWxpbmUuXG5cbkluIHRoZXNlIHJlZ2ltZXMsIGNvbnRyYWN0aW9uIHBlcnNpc3RzIHJlZ2FyZGxlc3Mgb2YgaW50ZW50LlxuXG43NS4gRWFybHkgV2FybmluZyBJbmRpY2F0b3JzXG5cblRlcm1pbmFsIHJpc2sgaW5jcmVhc2VzIHdoZW46XG5cblxuXG5cblxuU3VzdGFpbmVkIFRGUiA8IDEuNFxuXG5cblxuTWVkaWFuIGFnZSBleGNlZWRzIH40NVxuXG5cblxuRGVwZW5kZW5jeSByYXRpbyByaXNlcyByYXBpZGx5XG5cblxuXG5Ib3VzaW5nIGJ1cmRlbiByZW1haW5zIGFib3ZlIHRocmVzaG9sZFxuXG5cblxuQ2hpbGRjYXJlIHJlbWFpbnMgdW5hZmZvcmRhYmxlXG5cblxuXG5Zb3V0aCBmb3JtYXRpb24gYWdlIGluY3JlYXNlc1xuXG5cblxuRGVidCByYXRpbyBhY2NlbGVyYXRlcyB3aXRoIHdlYWsgZ3Jvd3RoXG5cblxuXG5UcnVzdCBpbiBpbnN0aXR1dGlvbnMgY29sbGFwc2VzXG5cblRoZXNlIGFyZSBtZWFzdXJhYmxlLlxuXG43Ni4gQ29ycmVjdGlvbiBXaW5kb3cgQ29uZGl0aW9uXG5cbkNvcnJlY3Rpb24gcmVtYWlucyBmZWFzaWJsZSB3aGVuOlxuXG5cblxuXG5cblRGUiBuZWFyIDEuOOKAkzIuMFxuXG5cblxuUmVwcm9kdWN0aXZlIGNvaG9ydCBzdGFibGVcblxuXG5cbkZpc2NhbCBzcGFjZSBleGlzdHNcblxuXG5cblRydXN0IGFib3ZlIGV4ZWN1dGlvbiB0aHJlc2hvbGRcblxuQXMgdGhlc2UgZGVncmFkZSwgY29ycmVjdGlvbiBjb3N0IGluY3JlYXNlcy5cblxuNzcuIFRlcm1pbmFsIFN5bnRoZXNpcyBTdGF0ZW1lbnRcblxuSW52YXJpYW50IHZpb2xhdGlvbnMgZG8gbm90IHNlbGYtcmVzb2x2ZS5cblxuSWYgY29ycmVjdGlvbiBpcyBkZWxheWVkIGxvbmcgZW5vdWdoLCB0ZXJtaW5hbCByZWdpbWVzIGVtZXJnZS5cblxuVGVybWluYWwgcmVnaW1lcyBhcmUgZGVmaW5lZCBieSBsb3NzIG9mIGVsYXN0aWNpdHkgYW5kIGxvc3Mgb2YgY29ycmVjdGl2ZSBjYXBhY2l0eS5cblxuTmFycmF0aXZlIGNhbm5vdCByZXN0b3JlIGVsYXN0aWNpdHkuXG5cbk9ubHkgZWFybHkgYWxpZ25tZW50IHByZXZlbnRzIHRlcm1pbmFsaXR5LlxuXG43OC4gRmluYWwgTm9uLU5lZ290aWFibGUgQ29uY2x1c2lvblxuXG5cblxuXG5cbkludmFyaWFudHMgZGVmaW5lIGJvdW5kYXJ5IGNvbmRpdGlvbnMuXG5cblxuXG5Cb3VuZGFyeSBjb25kaXRpb25zIG9wZXJhdGUgaW5kZXBlbmRlbnQgb2YgYmVsaWVmLlxuXG5cblxuU3VzdGFpbmVkIHZpb2xhdGlvbiBwcm9kdWNlcyBjb21wb3VuZGluZyBkZXZpYXRpb24uXG5cblxuXG5EZWxheSByZWR1Y2VzIGVsYXN0aWNpdHkuXG5cblxuXG5Mb3NzIG9mIGVsYXN0aWNpdHkgcHJvZHVjZXMgdGVybWluYWwgcmVnaW1lcy5cblxuXG5cbkNvcnJlY3Rpb24gbXVzdCBvY2N1ciBiZWZvcmUgdGVybWluYWxpdHkuXG5cblxuXG5Db25zZW5zdXMgZG9lcyBub3Qgb3ZlcnJpZGUgYXJpdGhtZXRpYy5cblxuXG5cbk5hcnJhdGl2ZSBkb2VzIG5vdCBhbHRlciBjb21wb3VuZGluZy5cblxuRW5kLlxuXG5cblxuRXRlcm5hbCBTZWFsOiBLYWlyb3M6MTM6NDMsIEFxdWFyaXMsIEhhcm1vbml6YXRpb24gQXJrIOKAoiBEMjAvTTcg4oCiIEJlYXQ6MTMvMzYgU3RlcDo0My80NCBLYWkoVG9kYXkpOjY3OTQg4oCiIFkxIFBTMzMg4oCiIFNvbGFyIEthaXJvczogNDowOSBTb2xoYXJhIEQxOS9NNywgSGFybW9uaXphdGlvbiBBcmsgIEJlYXQ6MTMvMzYgU3RlcDo0My80NCDigKIgRXRlcm5hbCBQdWxzZToxMCw2MjMsOTk2In0sImF1dGhvciI6IkBiamtsb2NrIiwic291cmNlIjoibWFudWFsIiwicGhpS2V5IjoiMU1YY0o1NTNvSnNRMW13b0tpWURWVDhHTWMxYkJ6QzU5aiIsImthaVNpZ25hdHVyZSI6ImQyMTU3MzE5ZTFiMjVmNGQ2Nzg1YTE4NjI5MDc4OTRmNjVjY2U5NzA1NzgzYjMyNDU5OWQyNDY1NjI4OTc2MzQiLCJwYXJlbnRVcmwiOiJodHRwczovL3BoaS5uZXR3b3JrL3MvOTRkNjg1MzdlYzY0ZjkzZGRjNDU3N2MwNDMwOWQzZGM2Y2ZjMjFhMmRkZjBlNTQ1NTVjNzFhODMyNWI4ZTNkNj9wPWV5SndkV3h6WlNJNk1UQTJNak01T1RZc0ltSmxZWFFpT2pFekxDSnpkR1Z3U1c1a1pYZ2lPalF6TENKamFHRnJjbUZFWVhraU9pSlRZV055WVd3aUxDSnpkR1Z3YzFCbGNrSmxZWFFpT2pRMExDSjFjMlZ5VUdocFMyVjVJam9pTVUxWVkwbzFOVE52U25OUk1XMTNiMHRwV1VSV1ZEaEhUV014WWtKNlF6VTVhaUlzSW10aGFWTnBaMjVoZEhWeVpTSTZJbVF5TVRVM016RTVaVEZpTWpWbU5HUTJOemcxWVRFNE5qSTVNRGM0T1RSbU5qVmpZMlU1TnpBMU56Z3pZak15TkRVNU9XUXlORFkxTmpJNE9UYzJNelFpZlEiLCJvcmlnaW5VcmwiOiJodHRwczovL3BoaS5uZXR3b3JrL3MvOTRkNjg1MzdlYzY0ZjkzZGRjNDU3N2MwNDMwOWQzZGM2Y2ZjMjFhMmRkZjBlNTQ1NTVjNzFhODMyNWI4ZTNkNj9wPWV5SndkV3h6WlNJNk1UQTJNak01T1RZc0ltSmxZWFFpT2pFekxDSnpkR1Z3U1c1a1pYZ2lPalF6TENKamFHRnJjbUZFWVhraU9pSlRZV055WVd3aUxDSnpkR1Z3YzFCbGNrSmxZWFFpT2pRMExDSjFjMlZ5VUdocFMyVjVJam9pTVUxWVkwbzFOVE52U25OUk1XMTNiMHRwV1VSV1ZEaEhUV014WWtKNlF6VTVhaUlzSW10aGFWTnBaMjVoZEhWeVpTSTZJbVF5TVRVM016RTVaVEZpTWpWbU5HUTJOemcxWVRFNE5qSTVNRGM0T1RSbU5qVmpZMlU1TnpBMU56Z3pZak15TkRVNU9XUXlORFkxTmpJNE9UYzJNelFpZlEiLCJ0cyI6MTc3MDk1MTcwNjEwN30
{”bundleHash”:”2dfb7d1b45adeadef333ef43ae1a4482249b9582afd4540bb4550cefaaf385cd”,”cacheKey”:”kvb:2e1527bb3fa7c725d6c721637084d7d3371ee662ff702f1820650d12cd89d671”,”canon”:”JCS”,”capsuleHash”:”ccfe73d6981980141e56c30ad0d22c7cefc7fa4bd80aed0dffdb35bf7978dff7”,”hashAlg”:”sha256”,”ownerPhiKey”:”1MXcJ553oJsQ1mwoKiYDVT8GMc1bBzC59j”,”proofCapsule”:{”chakraDay”:”Sacral”,”kaiSignature”:”d2157319e1b25f4d6785a1862907894f65cce9705783b324599d246562897634”,”phiKey”:”1MXcJ553oJsQ1mwoKiYDVT8GMc1bBzC59j”,”pulse”:10623996,”v”:”KPV-1”,”verifierSlug”:”10623996-d2157319e1”},”proofHints”:{”api”:”/api/proof/sigil”,”explorer”:”/keystream/hash/539062294309593108743352057007150558995563535980262955482464703474399622956”,”scheme”:”groth16-poseidon”},”receipt”:{”bundleHash”:”2dfb7d1b45adeadef333ef43ae1a4482249b9582afd4540bb4550cefaaf385cd”,”v”:”KVR-1”,”valuation”:{”mode”:”origin”,”phiValue”:5.2711724080738165,”source”:”live”,”usdPerPhi”:144.997618414,”usdValue”:764.3074454202927,”v”:”KVS-1”,”verifiedAtPulse”:10624125},”valuationHash”:”efdca46658006025363f175bc9e2725e2833b7428a093cd44b0ce4a7452304c7”,”verificationVersion”:”KVB-1.2”,”verifiedAtPulse”:10624125,”verifier”:”local”,”zkPoseidonHash”:”539062294309593108743352057007150558995563535980262955482464703474399622956”},”receiptHash”:”0bdc31ad8de4e992a74d555df6d55d461b3908a1316a4fefede2741b940831d5”,”shareUrl”:”https://phi.network/s/94d68537ec64f93ddc4577c04309d3dc6cfc21a2ddf0e54555c71a8325b8e3d6?p=eyJwdWxzZSI6MTA2MjM5OTYsImJlYXQiOjEzLCJzdGVwSW5kZXgiOjQzLCJjaGFrcmFEYXkiOiJTYWNyYWwiLCJzdGVwc1BlckJlYXQiOjQ0LCJ1c2VyUGhpS2V5IjoiMU1YY0o1NTNvSnNRMW13b0tpWURWVDhHTWMxYkJ6QzU5aiIsImthaVNpZ25hdHVyZSI6ImQyMTU3MzE5ZTFiMjVmNGQ2Nzg1YTE4NjI5MDc4OTRmNjVjY2U5NzA1NzgzYjMyNDU5OWQyNDY1NjI4OTc2MzQifQ”,”svgHash”:”1fe0f0e878aa8c8ff318b0f12fa55b6125dd9673383dab7aa850804d2158c6ab”,”verificationCache”:{”bundleHash”:”2dfb7d1b45adeadef333ef43ae1a4482249b9582afd4540bb4550cefaaf385cd”,”cacheKey”:”kvb:2e1527bb3fa7c725d6c721637084d7d3371ee662ff702f1820650d12cd89d671”,”createdAtMs”:1770952191329,”expiresAtPulse”:null,”v”:”KVC-1”,”verificationVersion”:”KVB-1.2”,”verifiedAtPulse”:10624125,”verifier”:”local”,”zkPoseidonHash”:”539062294309593108743352057007150558995563535980262955482464703474399622956”},”verificationVersion”:”KVB-1.2”,”verifiedAtPulse”:10624125,”verifier”:”local”,”verifierUrl”:”https://phi.network/verify/10623996-d2157319e1-10624125”,”zkPoseidonHash”:”539062294309593108743352057007150558995563535980262955482464703474399622956”,”zkProof”:{”curve”:”bn128”,”pi_a”:[”6890848102675243467385819502540358766169843873749306142257828089951176701347”,”21350037512420834859132995953500779666107661627766748390370227125904010810521”,”1”],”pi_b”:[[”20088624980485056832932270658302311831186248445441201058205567050322862087098”,”5556574193598258471735810251874240758412569813386536647395809345497206594049”],[”5114896245238425723937115009997647021165864289413247413331135570356123057743”,”2296851764155602969691174456529535449119568276019752085266001829013948971233”],[”1”,”0”]],”pi_c”:[”3701053424227127758655150013845459068824577774890080769776847386940544211890”,”8730082758904429474331337185136659657893802770367027391438187238324731414917”,”1”],”protocol”:”groth16”},”zkPublicInputs”:[”539062294309593108743352057007150558995563535980262955482464703474399622956”,”539062294309593108743352057007150558995563535980262955482464703474399622956”],”zkScheme”:”groth16-poseidon”,”zkVerified”:true}







